
Observer Agreement for Event Sequences 1

Running head: OBSERVER AGREEMENT FOR EVENT SEQUENCES

Observer Agreement for Event Sequences:

Methods and Software for Sequence Alignment and Reliability Estimates

Vicenç Quera

Universidad de Barcelona

Roger Bakeman

Georgia State University

Augusto Gnisci

Seconda Università degli studi di Napoli

In press, Behavior Research Methods.

Vicenç Quera, Departamento de Metodología de las Ciencias del Comportamiento,

Facultad de Psicología, Universidad de Barcelona, Spain; Roger Bakeman, Department of

Psychology, Georgia State University; Augusto Gnisci, Dipartimento di Psicologia,

Seconda Università degli studi di Napoli, Italy.

Correspondence concerning this article should be addressed to Vicenç Quera,

Departamento de Metodología de las Ciencias del Comportamiento, Universidad de

Barcelona, Campus Mundet, Paseo Valle de Hebrón, 171, E-08035 Barcelona, Spain.

Electronic mail may be sent via Internet to vquera@ub.edu, bakeman@gsu.edu, or

Augusto.Gnisci@unina2.it.

Observer Agreement for Event Sequences 2

Abstract

When sequences of discrete events, or other units, are independently coded by two

coders using a set of mutually exclusive and exhaustive codes, but onset times are not

preserved, it is often unclear how pairs of protocols should be aligned, yet such alignment is

required before Cohen’s kappa, a common agreement statistic, can be computed. We

describe a method—based on the Needleman and Wunsch (1970) algorithm originally

devised for aligning nucleotide sequences—for optimally aligning such sequences, and

offer evidence from a simulation study regarding the behavior of alignment kappa under a

variety of circumstances, including observer accuracy, number of codes, sequence length,

code variability, and parameters governing the alignment algorithm. We conclude that: (a)

under most reasonable circumstances, observer accuracies of 90% or better result in

alignment kappas of .60 or better; (b) generally, alignment kappas are not strongly affected

by sequence length, the number of codes, or the variability in their probability; (c)

alignment kappas are adversely affected when missed events and false alarms are posible;

and, (d) cost matrices and priority orders used in the algorithm should favor substitutions

(i.e., disagreements) over insertions and deletions (i.e., missed events and false alarms).

Two computer programs were developed: GSA (for Global Sequence Alignment), for

carrying out the simulation study, and ELign (for Event Alignment), a user-oriented program

that computes alignment kappa and provides the optimal alignment given a pair of event

sequences.

.

Observer Agreement for Event Sequences 3

Observer Agreement for Event Sequences:

Methods and Software for Sequence Alignment and Reliability Estimates

Observer reliability is a central concern whenever behavior is coded by trained

observers. If different observers who view the same stream of behavior and code it using

the same coding scheme obtain data that differ substantially, then we cannot be confident

about the objectivity or quality of their data, and hence cannot trust results from analyses

performed on them. When behavior is observed continuously and coded sequentially,

investigators usually demand point-by-point, or local, agreement (Bakeman & Gottman,

1997), using a set (or sets) of mutually exclusive and exhaustive codes. For example, the

codes quiet alert, fussy, crying, rapid-eye movement sleep, and deep sleep could be used to

characterize an infant's state. However, such a set of codes can be applied in more than one

way. For some of these ways, methods for determining observer agreement are relatively

straightforward, but for one relatively common and simple way of assigning codes, methods

are problematic. In the present paper, we consider this problem and offer a solution.

Before presenting the problematic application, it is useful to consider two

unproblematic ways of assigning codes. Coders could be presented with a transcript, and

asked to assign codes to each turn of talk (or other unit) identified in the transcript; or

coders could be presented with a video recording of an infant and asked to identify onset

and offset times (e.g., to the nearest second) of the different infant states, in which case we

would think of the data as successive time units to which codes had been assigned

(Bakeman & Quera, 1995). In such cases, unitizing occurs before coding, and coders need

only assign codes to the specified units. For cases that fit these last two applications, it has

Observer Agreement for Event Sequences 4

become conventional to report Cohen’s kappa, an index that corrects for chance agreement

and that assesses the agreement with which a set of mutually exclusive and exhaustive

codes has been applied (Bakeman & Gottman, 1997; Cohen, 1960).

However, more simply, coders could be presented with a video recording and asked

to identify events as they occur in sequence, without noting any information regarding time.

Thus coders simultaneously unitize and code. Cases that fit this application, which on its

face seems quite simple, are in fact more complex with respect to determining observer

agreement than the first two. The complexity results because two observers may segment

the stream of behavior differently, thus even the number of events coded might differ and

their alignment in any case would be ambiguous. As Bakeman and Gottman (1997) wrote:

[determining agreement about unitizing when] coding events, without any

time information, is in some ways the most problematic ... If observers note

only the sequence of events ... then determining the agreement as to unit

boundaries is more difficult. The two protocols would need to be aligned,

which is relatively easy when agreement is high, and much more difficult

when it is not, and which requires some judgment in any case (p. 69).

Thus determining agreement for what Bakeman and Quera (1995) call event sequences (a

single stream of coded events without time information), and which they characterize as the

simplest of the sequential data types they define, is a more difficult matter than for

seemingly more complex sequential data types.

In this paper, we consider the issue of observer agreement for event sequences. First

we describe methods for aligning such sequences, then we consider how their agreement

Observer Agreement for Event Sequences 5

might best be assessed, and finally we offer evidence from simulation studies regarding the

behavior of the agreement index we recommend.

Sequence Alignment

Event sequences are simply strings of codes. Two different strings of codes, each

produced by an observer independently coding the same stream of behavior, may well differ

in length (because the observers unitized differently), so the first question is, how should

these two sequences be aligned—which codes from Observer 1 should be matched with

which codes from Observer 2—so that we can begin to assess the extent of agreement.

Desired is an algorithm so that alignment is not left to individual judgment, as Bakeman and

Gottman (1997) suggested might be necessary. Such an algorithm, one that determines the

optimal global alignment between two sequences by means of dynamic programming, is

presented here.

The algorithm is adopted from sequence alignment and comparison techniques that

are routinely used by molecular biologists to find similarities among DNA sequences in

order to classify them, and to search for patterns in the sequences themselves (Durbin,

Eddy, Krogh, & Mitchison, 1998; Gusfield, 1997; Sankoff & Kruskal, 1999; Waterman,

1995). The techniques have also been used in speech processing, error detection and

correction in computer science, and stratigraphic analysis (for a review, see Kruskal, 1999),

for comparison of content in sociological research papers (Abbott & Barman, 1997), and for

career path similarity analysis (McVicar & Anyadike-Danes, 2000; Scherer, 2001). An

alternative method for computing agreement between sequences was developed by Dijkstra

& Taris (1995), although it does not guarantee optimal matching. Fichman (1999) presented

a paper on the potential usefulness of a specific sequence alignment procedure for global

Observer Agreement for Event Sequences 6

matching of two event sequences corresponding to partners in an interaction; and more

recently, Fu (2001) developed ACT-PRO, a computer program that analyzes sequences of

behavioral events using measures of sequence similarity based on alignment algorithms. To

our knowledge, the use of these alignment techniques for the assessment of observer

reliability has not been systematically explored before, although Dijkstra (2005) included

one common algorithm as a tool for comparing sequences in Sequence Viewer, a computer

program for the analysis of sequences for sociological events.

A Sequence Alignment Algorithm

First, some notation and terminology: Let C be a coding scheme: C = { c 1, c 2, …,

cK}, where ci is a code representing a discrete behavioral state, and K is the number of

different, exhaustive and mutually exclusive codes; for example, a coding scheme

characterizing an infant’s state, C = {“quiet alert” (code A), “fussy or crying” (code B),

“rapid-eye movement sleep” (code C), “deep sleep” (code D)}. Assume that two observers

independently code the following event sequences, S1 = <s11s12…s1m> and

S2 = <s21s22…s2n>, where m and n are the lengths of the sequences; for example,

S1 = <BBACDACDAB> and S2 = <BACAACABABD>. In general, m ≠ n but, even if m =

n, we cannot take for granted that s1i is aligned or paired with s2i for all i.

In order to align sequence S1 and sequence S2, some kind of correspondence

between their codes must be established, that is, the sequences need to be globally aligned.

Alignment proceeds step-by-step, by considering the transformations required to convert

one sequence into the other; the more transformations required, the greater we say the

distance between the two sequences is. We begin with S1 and step-by-step apply successive

transformations that build a new sequence; when done, the new sequence is S2 and a key

Observer Agreement for Event Sequences 7

question is, how many steps were required to effect this transformation. At each step, there

are four possibilities:

1. an agreement or identity transformation: a code from S1 is paired with an

identical code from S2 and the common code is inserted in the new sequence;

2. a disagreement or substitution: a code from S1 is paired with a different code

from S2 and the S2 code is inserted in the new sequence;

3. a deletion: a code from S1 is paired with no code from S2 and a hyphen

(instead of the S1 code) is inserted in the new sequence; and

4. an insertion: no code from S1 is paired with a code from S2 and the S2 code

in inserted in the new sequence (but a hyphen is inserted in the S1 sequence). From the

point of view of Observer 1, a deletion is an error of omission and an insertion is an error of

commission on the part of Observer 2.

Given two event sequences, usually many different global alignments are possible.

In fact, given two sequences with lengths m and n, the number of possible global

alignments, if code substitutions but not indels are permitted, is
min(,)

m n
m n
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Ewens &

Grant, 2001), which is the lower bound for the total possible number of alignments that

permit both indels and substitutions (see also Waterman, 1995); for example, if m = n =

100, that lower bound equals 58200
9 10

100
⎛ ⎞

≅ ⋅⎜ ⎟
⎝ ⎠

, and therefore looking for the best alignment

by listing them all is essentially an impossible task. Our objective is to determine an optimal

alignment, one which requires the fewest possible transformations and that results in the

highest number of matching codes. Results depend on whether we permit or disallow

substitutions (more on this later); in the first case disagreements are permitted but in the

Observer Agreement for Event Sequences 8

second, only errors of omission and commission are allowed. For example, for sequences

S1 and S2, two possible global alignments, among others, are (the first permits, whereas the

second disallows disagreements):

 BBACDAC-DAB- BBAC-DAC--DAB-
 |||:|| :|| ||| || ||
 -BACAACABABD -BACA-ACAB-ABD

These alignments were obtained by means of a dynamic programming algorithm that

provides optimal alignments, and which is described subsequently. For both of these

alignments, hyphens in the first sequence indicate that codes are inserted in the second one,

and hyphens in the second sequence indicate that codes are deleted from the first one.

Vertical lines indicate identity matches, and colons indicate substitution matches.

Longest Common Subsequence

When substitutions were allowed, 5 transformations were required and the longest

common subsequence of identical or similar codes was BAC[DA]AC[DB]AB or 9 codes

long, where [DA] indicates either D or A from the first and second sequences, respectively;

likewise [DB]. When substitutions were disallowed, 7 transformations were required and

the longest common subsequence of identical codes was BACACAB or 7 codes long.

When two sequences are optimally aligned, the longest common subsequence of agreement

(LCSA) is obtained (e.g., Hirschberg, 1997; Needleman & Wunsch, 1970). If

disagreements are permitted, then the LCSA consists of identical or similar codes; if they

are not, then the LCSA consists of identical codes only. In both cases, the length of the

LCSA is denoted Λ. Other more complex sequence alignment methods exist (e.g., multiple

global alignment of many sequences, Gusfield, 1997; Lawrence, Altschul, Boguski,

Neuwald, & Wooton, 1993), but because we are interested in finding the distance between

Observer Agreement for Event Sequences 9

two sequences obtained by independent observers, we will focus on algorithms and

measures for pairwise, or simple global alignment of two sequences.

Distance Between Sequences

The distance between two sequences (δ) can be defined as the number of code

insertions (I), deletions (D), and substitutions (S) that are required to convert one sequence

into the other, that is, δ = I + D + S (Gusfield, 1997; Kruskal, 1999; Levenshtein, 1965).

The Levenshtein distance (also known as edit distance) between two sequences is defined as

the minimum number of code insertions, deletions, and substitutions necessary in order to

convert one sequence into the other (but see Hirschberg, 1997); thus, it is the minimum

number of transformations required to convert one sequence into the other. The smaller the

Levenshtein distance, the greater the LCSA length will be.

Costs and generalized Levenshtein distance. Every possible transformation can be

assigned a particular cost or weight. For a coding scheme with K codes, a (K+1) × (K+1)

cost matrix (or weight matrix, or scoring function; e.g., Durbin et al., 1998; Giegerich &

Wheeler, 1999) is defined, W = {wij}, for i = 0, 1, … K, and j = 0, 1, … K, where wij > 0 (i

> 0, j > 0) is the cost of substituting code j for code i; wi0 (i > 0) is the cost of deleting code

i; and w0j (j > 0) is the cost of inserting code j. Substitution costs along the upper-left to

lower-right diagonal of W are zero, by definition. Then the generalized Levenshtein

distance (∆ or GLD), or alphabet-weight edit distance (Gusfield, 1997), is the sum of the

number of insertions, deletions, and substitutions, weighted by their corresponding costs:

0 0
1 1 1

s t u u

s I t D u S

j i i j
s t u

w w w
= = =

= = =

∆ = + +∑ ∑ ∑ (2)

Observer Agreement for Event Sequences 10

where 0 sj
w , 0ti

w , and
u ui jw are the costs of the sth insertion, the tth deletion, and the uth

substitution in the sequences, respectively. If wI = wD = wS = 1 (all insertions, deletions,

and substitutions are assigned identical costs), then ∆ = I + D + S. If wI = wD = 1 and wS =

2, then a code insertion followed by a code deletion has the same cost as a code substitution.

If wI = wD = 1 and wS > 2, then substitutions will not occur; an insertion followed by a

deletion would cost less than a substitution. The distance between sequences defines a true

metric space of sequences, that is, the Levenshtein distance has the reflexive, symmetrical,

and triangle inequality properties (Waterman, 1995, p. 185). Costs can be chosen according

to specific theoretical assumptions, or be estimated from the data. In any case, costs are

usually symmetrical, that is, wij = wji. Costs can be estimated so that codes that occur rarely

have higher indel costs than codes that occur often. As a general procedure, Mannila and

Ronkainen (1997) propose assigning empirical indel costs that are inversely proportional to

the code simple or unconditional frequencies in the sequences being compared;

alternatively, costs could be assigned as directly proportional to the codes unconditional

frequencies, because mistakes like inserting or deleting common codes, it could be argued,

should have more weight on ∆ than mistakes like inserting or deleting rare codes, because

it is assumed that detecting common events is easier than detecting rare events.

Weight Matrices

The weight matrix permits us to give a different weight for each insertion, deletion,

and substitution, which provides far more flexibility than may ever be desired or desirable.

In the context of DNA sequences, various schemes for proportional weights, as just

described, might make sense, but in the context of observer agreement, we think that almost

always, absent a strong rationale, weights should be limited to simple integers. Here we

Observer Agreement for Event Sequences 11

consider three possibilities. All agreements on the diagonal are set to zero, by definition. In

addition: (a) all other weights are set to one (see Figure 1), thus counting disagreements,

omissions, and commissions equally; (b) omissions and commissions set to one but

disagreements are set to two, thus counting a disagreement as equivalent to a series of two

omission-commission errors; and (c) omissions and commissions set to two but

disagreements are set to one, thus counting disagreements as half as serious as omission and

commission errors. Of these three, we think the last may best reflect what investigators

expect of observer agreement.

In a similar fashion, while disallowing substitutions is discussed as an option in the

literature we have cited, it is one that we would rarely recommend when observer

agreement is considered. Almost always, observers are as likely, if not more likely, to

disagree about how to categorize an event as to commit errors of omission or commission,

so it rarely makes sense to disallow disagreements. Nonetheless, comparing results when

disagreements are permitted with results when disagreements are disallowed, as we

occasionally do in this article, can be instructive. Agreement will be worse when

disagreements are not allowed, and so this case represents a lower bound on agreement.

Needleman and Wunsch Algorithm

The algorithm that provides the optimal matching or alignment between two

sequences was developed independently by several researchers from different fields during

the 1970s (Kruskal, 1999), and has been re-invented since then (e.g., Mannila & Ronkainen,

1997). Molecular biologists call it the Needleman and Wunsch (1970) algorithm (hereafter

referred to as NW). The NW algorithm belongs to a broad class of methods known as

dynamic programming, in which the solution for a specific subproblem can be derived from

Observer Agreement for Event Sequences 12

the solution for another subproblem immediately preceding it. Regarding sequence

alignment, using dynamic programming means that, in order to find the alignment that is

optimal, there is no need to check all possible alignments between the two sequences but

only a very small portion of them. Proceeding step by step, at each step three different

possible subalignments that would add to the subalignments accumulated from previous

steps are considered and two discarded (why three will be described shortly). Therefore, at

every step two thirds of the possible subalignments are discarded. As a consequence, the

method is exact (that is, it guarantees the optimal solution) without being exhaustive (that is,

it does not explore all possible alignments; Galisson, 2000).

The goal of the algorithm is to determine an optimal alignment, that is, the steps

required to transform one sequence into the other, defined as the alignment with the lowest

generalized Levenshtein distance and longest common subsequence. Thus the algorithm

uses the cost matrix described earlier, and different costs will result in different alignments.

The algorithm utilizes three additional matrices, one to accumulate distances, one to

accumulate lengths, and one for pointers, as described shortly. Each of these matrices has

m+1 rows and n+1 columns, indexed 0, 1, … m, and 0, 1, … n, respectively, where m is the

length of sequence S1 and n the length of S2. Row 0 indicates insertions, Rows 1 to m are

labeled with the codes in the S1 sequence, Column 0 indicates deletions, and Columns 1 to n

are labeled with the codes in the S2 sequence. Which sequence is labeled S1 and which S2 is

arbitrary; results are the same no matter which sequence is labeled S1.

The distance matrix (D) accumulates generalized Levenshtein distances; in

particular, when complete Dmn = ∆ (GLD) for S1 and S2. The length matrix (L)

accumulates common subsequence lengths; in particular, when complete Lmn = Λ (the

Observer Agreement for Event Sequences 13

length of the LCSA) for S1 and S2. The pointer matrix (P), as described shortly, indicates

which of three preceding cells—for cell(r,c) preceding cells are cell(r,c–1), cell(r–1,c–1),

and cell(r–1,c), indicated with , , and , respectively—contributes to the computation of

Lrc and Drc. Pointers are used to build the alignment by tracing them back from cell (m,n).

The NW algorithm works as follows. First, insertion and deletion lengths are

initialized to zero, thus L00 = Lr0 = L0c = 0. Second, insertion and deletion distances are

initialized to their accumulative costs, thus D00 = 0, Dr0 = Dr–1,0 + w(s1r,0), D0c = D0,c–1 +

w(0,s2c), where w(s1r,0) is the cost of deleting the element at position r of sequence S1, and

w(0,s2c) is the cost of inserting element at position c of sequence S2 (E.g., D04 is the

accumulative cost of inserting elements s21, s22, s23, and s24; similarly, D30 is the

accumulative cost of deleting elements s11, s12, and s13). And third, insertion and deletion

pointers are initialized so that Pr0 = and P0c = . (For the expressions in the preceding

sentences, r = 1 to m and c = 1 to n). After Row 0 and Column 0 are initialized, iterations

of the NW algorithm then fill in the remaining cells, beginning with Row 1 and considering

Columns 1 to n, then Row 2, etc. (or vice versa, beginning with Column 1 and considering

Rows 1 to m).

For each cell examined, the distance between the subsequences up to that point (i.e,

s11…s1r and s21…s2c), is computed as:

Drc = min[Dr–1,c–1 + w(s1r,s2c), Dr–1,c + w(s1r,0), Dr,c–1 + w(0,s2c)] (3)

In other words, at cell(r,c) we select among three possible transformations in our ongoing

effort to transform S1 into S2. We can either substitute code s2c for s1r, or delete code s1r, or

insert code s2c. The transformation selected is the one that results in the lowest generalized

Levensthein distance for the subsequence up to this point. Note that there are two kinds of

substitution. One occurs when s2c = s1r (an agreement); the weight is zero and so they will

Observer Agreement for Event Sequences 14

always be matched. The other occurs when s2c ≠ s1r (a disagreement); these two codes are

matched if substituting one for the other increases the generalized Levensthein distance less

than deleting the first code or inserting the second one. The three possibilities at cell(r,c)

are illustrated in Figure 2.

Lrc and Prc are updated accordingly. If substitution was chosen, then Prc = and Lrc

= Lr–1,c–1 + 1 because one more code was added to the common subsequence obtained at

cell(r–1,c–1). If insertion was selected, then Prc = and Lrc = Lr,c–1 because no code was

added to the common subsequence obtained at cell(r,c–1). If deletion was chosen, then Prc

= and Lrc = Lr–1,c because no code was added to the common subsequence obtained at

cell(r–1,c).

When transformations have equal costs, one must be selected. The one selected can

affect the specific alignment, but the generalized Levenshtein distance and the length of the

common subsequence are not affected, so in this sense the choice is inconsequential. Still,

to effect the algorithm we need to break ties, for which purpose we prioritize

transformations (see SEQALN software, Hardy & Waterman, 1997). Four possible priority

orders are:

1. substitution, deletion, insertion;

2. substitution, insertion, deletion;

3. deletion, substitution, insertion; and

4. insertion, substitution, deletion.

Order 3 provides the upper envelope, and Order 4 the lower envelope, in terms of the trace

described below, of optimal alignments. Orders 1 and 2 favor substitution. Because we

think disagreeing as to an event is at least as common if not more so than errors of omission

Observer Agreement for Event Sequences 15

and commission, and because generalized Levenshtein distance and length of the common

subsequence are not affected in any case, as a general rule we arbitrarily recommend Order

1, although later we consider the effect of making other choices.

Application of the NW algorithm to sequences S1 and S2, with all costs (i.e.,

insertion, deletion, and substitution) identical and equal to 1, and priority Order 1, gives the

results shown in Figure3. This is the alignment result (the one permitting disagreements)

presented earlier for those sequences,

 BBACDAC-DAB-
 |||:|| :||
 -BACAACABABD

but now we can see how the results—∆ = 5 and Λ = 9—were obtained. In general,

application of the NW algorithm provides the generalized Levenshtein distance (∆ = Dmn)

and the length of the longest common subsequence (Λ = Lmn) for two sequences, whereas

the P matrix is used to generate the alignment, tracing the pointers back from cell(m,n). As

an example, Figure 4 shows how the alignment is generated from the pointers in Figure 3.

Measures of Agreement From Pairwise Global Sequence Alignment

The NW algorithm yields two indices that could be used as measures of observer

agreement for event sequences, the length of the longest common subsequence of

agreement and the generalized Levenshtein distance, symbolized here with Λ and ∆,

respectively. The upper bounds for both indices vary; specifically, the upper bound for Λ is

the minimum of m and n, that is, the length of the shorter sequence, whereas the upper

bound for ∆ depends on sequence lengths and the specific costs used as well. When

assessing observer agreement, investigators are usually interested in knowing how a

computed measure of agreement departs from chance agreement. However, the distributions

Observer Agreement for Event Sequences 16

of the measures of chance agreement provided by the NW algorithm are “far from being

completely understood” (Waterman, 1995, p. 255), although expected values and bounds of

Λ and ∆ for random sequences of infinite or very big lengths have been estimated, when

code substitutions are disallowed (e.g., Baeza-Yates, Gavaldà, Navarro, & Scheihing, 1999;

Boutet de Monvel, 1998; Chvátal & Sankoff, 1999; Dančík, 1994; Deken, 1979, 1999;

Paterson & Dančík, 1994; Sankoff & Mainville, 1999). While those results are valid only

for very large sequence lengths m and n, event sequences recorded during observation

sessions are often not very long; common lengths are in the hundreds, and seldom in the

thousands. For that reason, we usually cannot use expected values of chance agreement for

infinite n as a reference.

Therefore, in order to assess observer agreement, once sequences are aligned, their

agreements and disagreements can be tallied in a (K+1) × (K+1) agreement matrix of the

sort used to compute Cohen’s kappa. The first row indicates insertions (i.e., events not

coded by Observer 1 that were coded by Observer 2), and the first column indicates

deletions (i.e., events coded by Observer 1 that were not coded by Observer 2), which

accounts for the K+1 dimension. Such a table is shown in Figure 5 for the alignment

between S1 and S2 given previously. A kappa statistic can be defined in the usual way

(Cohen, 1960), as the probability of observed agreement minus chance agreement divided

by one minus chance agreement, with one qualification: Because the cell in the upper-left

corner is a structural zero (once sequences are aligned, no event can be coded as missed by

both observers), the agreements expected by chance need to be computed with an iterative

proportional fitting algorithm and not the usual closed-form formula. Thus for clarity we

Observer Agreement for Event Sequences 17

term this statistic alignment kappa and not Cohen’s kappa; for the data in Figure 5,

alignment kappa is .48.

When substitutions are not allowed, the matter is more complex—although as

discussed earlier we think this constraint would rarely be imposed when considering

observer agreement. With no substitutions permitted, all cells indicating disagreement are

structural zeros, and the usual computations for expected agreement do not apply. With this

pattern of structural zeros, the constraints are such that for the model of quasi-independence

an iterative proportional fitting algorithm, as is often used for log-linear analysis (e.g.,

Bakeman & Robinson’s ILOG program, 1994), computes expected frequencies identical to

those observed; thus the value of kappa is zero. More general solutions, based on iterative

procedures and permutations, for evaluating how a computed measure of agreement

between sequences departs from chance agreement have been proposed (Altschul &

Erickson, 1985; Booth, Maindonald, Wilson, & Gready, 2004).

Values of Alignment Kappa Under Various Simulated Conditions

In a previous paper (Bakeman, Quera, McArthur, & Robinson, 1997), we used

numerical simulation to study values of observer agreement for timed-event sequences (e.g.,

Cohen’s kappa) generated by observers of known reliability, as specified in a simulation

program. Thus simulation provides an opportunity denied us in actual situations; it lets us

know (or specify) the theoretical reliability of observers before we attempt to measure such

reliability. Likewise, regarding event sequences, it is especially interesting to know how the

agreement measures provided by the NW algorithm are related to theoretical observer

reliability (i.e., reliability set by simulation) because this permits us to judge which values

Observer Agreement for Event Sequences 18

of alignment kappa, computed once the observed event sequences are aligned, can be

reasonably regarded as indicators of good reliability.

Simulation Parameters

For the simulation, we define observer reliability as accuracy, that is, the probability

that, given that an event has occurred, the observer detects and codes it correctly (Gardner,

1995; Bakeman et al., 1997). Given a coding scheme with K exhaustive and mutually

exclusive codes, a (K +1)×(K +1) matrix { }ijρ=R of conditional probabilities is defined,

with both rows and columns numbered 0 to K. For i > 0, j > 0, ijρ is the probability that the

observer records code cj given that a behavior that should be coded ci has occurred. Each

row in matrix R sums to 1; diagonal cells are accuracies and off-diagonal cells are errors.

Elements in column 0 are missed event probabilities (e.g., Kaye, 1980), or omission errors;

that is, 0iρ is the probability that the observer fails to detect a behavior that should be coded

ci. Elements in row 0 are false alarm probabilities (Kaye, 1980), or comission errors, that is,

0 jρ is the probability that the observer codes cj given that no behavior has actually

occurred. For reliable observers, iiρ are close to 1 for all i (00ρ = 0 by definition). An

observer can be more reliable with respect to certain behaviors, and less reliable with

respect to certain others, in which case diagonal elements are not identical. Also, an

observer who fails to code a behavior correctly may favor some false codings more than

others, in which case off-diagonal elements within a row are not identical. Finally, when

two fallible observers are compared, it can be assumed that both are equally reliable or not;

in the former case, one single matrix R describes both observers, while in the latter, two

different reliability matrices should be assumed.

Observer Agreement for Event Sequences 19

Two more probabilities are required for the simulation: (a) the unconditional

probability of a false alarm (α), that is, the probability that the observer codes any behavior

when no behavior has actually occurred—when a false alarm occurs, the observer records a

code cj with probability 0 jρ ; and (b) the probability of missing an event (0i iε ρ=), that is,

the probability that the observer codes nothing given that a behavior that should have been

coded ci has occurred. When two fallible observers are compared, it can be assumed that

both α and iε are identical or different for the two observers. If we assume, as we do here,

that both observers have the same accuracy ρ , that it is the same for all codes, and that all

codes can be missed with identical probability ε , then the cells in the reliability matrix R

are set as follows. (a) Diagonal cells, iiρ ρ= . (b) Cells in column zero (missed events),

0 (1)iρ ε ρ ω= = − , where 0 1ω≤ ≤ is a parameter; therefore, we define the probability of

missing an event as a decreasing function of the accuracy that is associated with that event;

for example, given .20ω = , values for ε are .08, .06, .04, .02, and 0 when ρ equals .60,

.70, .80, .90, and 1.00, respectively. (c) Cells in row zero (false alarms), 0 j jpρ = , that is,

the code unconditional probabilities. (d) Rest of off-diagonal cells,

(1)(1) /(1)ij Kρ ρ ω= − − − .

Global Sequence Alignment (GSA) Simulation Program

In order to understand how alignment kappa is related to observer reliability, we

developed a computer program (GSA, Global Sequence Alignment for Windows, available

from the authors upon request) for carrying out several series of simulations, guided by

values for variables we have used before (Bakeman et al., 1997). Specifically, we

considered values for observer accuracy (ρ) of .60, .70, .80, .90, and 1.00; sequence lengths

Observer Agreement for Event Sequences 20

(µ) of 25, 50, and 100; values for the number of codes (K) of 3, 5, 10, and 20; and

equiprobable, moderately variable, and highly variable simple probabilities for those codes,

which were computed according to this formula (see Bakeman et al., 1997, Table 1):

1 2(1)(1) /(1)(,)i
F i Kp F K

FK
+ − − −

= (4)

where F is a factor governing variability of code unconditional probabilities, and (,)ip F K

is the simple probability of code ci (for all i, 1 through K) as a function of factor F and

number of codes K. When F = 1, codes are equiprobable, and (1,) 1/ip K K= for all codes.

The higher the F the higher the variability. In the simulations, F = 1, 2, and 4 were used for

equiprobable, moderately variable, and highly variable probabilities, respectively. For

example, when K = 5 and F = 4, probabilities are .050, .125, .200, .275, and .350. Rarely

would probabilities be so neatly graduated in an actual investigation, but the differences

between smallest and largest probabilities represented by our three cases should provide

some guidance when investigators encounter a similar range of differences in their simple

probabilities.

Each simulation run started by generating a random latent event sequence with

specified length µ for number of codes K with variability F; this represents the true state of

affairs. Then, two observed or manifest event sequences were generated according to

specified parameters for , , and ρ α ω ; these represent the work of fallible coders. Given a

latent sequence, in order to generate codes for one observed sequence, for every code ci in

the latent sequence, first an extra code or false alarm may be generated with probability α ;

extra codes are sampled according to their simple probabilities pj . Then, the latent code

may generate either one observed code with probability 1 (1)ρ ω− − , or it may be missed

Observer Agreement for Event Sequences 21

with probability (1)ε ρ ω= − , not generating a code at all; if an observed code must be

generated, then it is sampled according to the simple code probabilities. It can be

demonstrated that the expected length of a manifest sequence equals []1 (1)µ α ρ ω+ − − . In

our simulations we considered values of α = 0 and .2; and ω = 0 and .2. Therefore, the

lengths of the manifest sequences ranged, in average, from 23 (when

25, .6, 0, .2µ ρ α ω= = = =) to 120 (when 100, 1, .2, .2µ ρ α ω= = = =). In each

simulation the expected length of both manifest sequences was identical, because the same

reliability parameters were assumed for the two observers; however, when both false alarms

and missing events were possible, the actual lengths of the two manifest sequences could

differ, as often happens with observers. The pair of manifest sequences was then aligned

with the NW algorithm, an agreement matrix was obtained, and alignment kappa was

computed for it. Finally, the mean alignment kappa was calculated for all the pairs of

sequences that had been generated under the same conditions.

In order to align the sequences, three different costs matrices and four priority orders

were used when applying the NW algorithm. Costs matrices were: (a) both indel and

substitions costs equal 1; (b) indel costs equal 1, substitution costs equal 2; and (c) indel

costs equal 2, substitution costs equal 1; code substitutions are possible in the three cases.

Priority orders were those described above; as the priority order affects the trace back but

not the total number of agreements between the sequences, tallies in the off-diagonal cells

of the agreement matrix may vary when the priority order is varied, and thus different

kappas can be obtained.

In sum, the following parameters were varied systematically in the simulations

according to a 5 × 3 × 4 × 3 × 2 × 2 × 3 × 4 factorial design:

Observer Agreement for Event Sequences 22

1. Observer accuracy: ρ = .60, .70, .80, .90, 1.00.

2. Latent sequence length: µ = 25, 50, 100.

3. Number of codes: K = 3, 5, 10, 20.

4. Code variability: F = 1 (equiprobable), 2 (moderate), 4 (high).

5. False alarm probability: α = 0, .20.

6. Parameter for missing event probability: ω = 0, .20. Actual missing event

probabilities were thus ε = 0 (for any value of ρ , when ω = 0) and ε = .08, .06, .04, .02,

and 0, (for ρ = .60, .70, .80, .90, 1.00, when ω = .20, respectively).

7. Cost matrices: (a) indels = substitutions = 1; (b) indels = 1, substitutions = 2;

(c) indels = 2, substitutions = 1.

8. Priority orders: (a) substitutions, deletions, insertions; (b) substitutions,

insertions, deletions; (c) deletions, substitutions, insertions ; (d) insertions, substitutions,

deletions; that is, Orders 1–4, respectively.

For each combination of these parameters, 2,000 latent sequences were simulated,

their corresponding manifest sequences were generated and aligned, and kappas were

computed for the agreement tables obtained from the alignments. In total, 8,640 (design

cells) × 2,000 (pairs of manifest sequences) = 17,280,000 alignment kappas were calculated.

Results were summarized by averaging the kappas within each design cell. Only the most

relevant results will be detailed here; the complete table of mean kappas is available from

the authors upon request.

Simulation Results

Figures 6 through 9 show mean values of kappa as a function of observer accuracy

for selected combinations of parameters. Each point in the figures represents the mean value

Observer Agreement for Event Sequences 23

of kappa for 2,000 cases. Observer accuracies of .70, .80, .90, and 1 are displayed; for

accuracies less than .70, essentially all mean values of kappa were below .50, values that are

rarely regarded as acceptable.

Figures 6 and 7 portray three sets of lines. The topmost set we regard as a best case

scenario: a longer sequence of many, equiprobable codes with no false alarms or missed

events (µ = 100, K = 20, F = 1, α = ω = 0); the middle set as a worse case scenario: a

shorter sequence of few codes varying in probability but with no false alarms or missed

events (µ = 25, K = 3, F = 4, α = ω = 0); and the bottommost set as a worst case scenario:

like the worse case but with false alarms and missed events (µ = 25, K = 3, F = 4, α = ω =

.20). We also considered a fourth case (µ = 100, K = 20, F = 1, α = ω = .20); results were

slightly better than the worst case, but sufficiently similar to it that we decided for

simplicity not to consider these results further.

The values graphed in Figure 6 indicate the effect of varying priority order (for these

results, indel and substitution costs were identical, i.e., indel = substitution = 1). The lower

line in each set represents Order 1 whereas the upper represents Order 3; Orders 2 and 4

gave essentially the same results as Orders 1 and 3, respectively, so are not shown. The

difference between Orders 1 and 3 increased somewhat as accuracy declined, but was never

great. Consequently we recommend using Order 1 when aligning sequences because it is

slightly more conservative (i.e., gives slightly lower values of alignment kappa). Moreover,

Order 1, which specifies that substitutions are given priority over deletions and insertions,

strikes us as more realistic than Order 3. Consequently, subsequent simulation results are

given for Order 1 only. Otherwise, we conclude from Figure 6 that, except for the most

Observer Agreement for Event Sequences 24

extreme worst case scenarios, investigators can reasonably conclude that alignment kappas

of .60 or better indicate observers who are at least 90% accurate.

The values graphed in Figure 7 indicate the effect of varying cost matrices. The

lower line in each set favors substitutions (indel = 2 and substitutions = 1), the middle line

favors neither (indel = substitution = 1, as for the results shown in Figure 6), and the upper

line favors insertions and deletions (indel =1 and substitutions = 2). Costs have little effect

for the best case scenario, but more of an effect for less than ideal scenarios, especially as

observer accuracy declines. Lowest values of alignment kappa are obtained when

substitutions are favored. Consequently we recommend specifying indel = 2 and

substitutions = 1 when aligning sequences because it is slightly more conservative.

Moreover, this specification, like Order 1, strikes us as more realistic than favoring

insertions and deletions (disagreements are more likely than missed events and false

alarms). Consequently, subsequent simulation results are given for indel = 2 and

substitutions = 1 only. Otherwise, as with Figure 6, we conclude from Figure 7 that, except

for the most extreme worst case scenarios, investigators can reasonably conclude that

alignment kappas of .60 or better indicate observers who are at least 90% accurate.

The values graphed in Figure 8 compare the effect of varying number of codes and

sequence length for equiprobable codes, keeping other factors constant (i.e., F = 1, α = ω =

0, substitutions favored over indels, and priority Order 1). The topmost set of lines

represents K = 20 and the bottommost K = 3. The lower, middle, and upper lines in each set

(separate lines are not always visible) represent µ = 25, 50, and 100, respectively.

Alignment kappas were higher when more codes were defined (i.e., K = 20), as expected,

but sequence length had only a slight effect (when codes were few, alignment kappa

Observer Agreement for Event Sequences 25

became somewhat higher for longer sequences as observer accuracy declined). Under ideal

circumstances (K ≥ 20), the relationship between observer accuracy and mean kappa is

almost linear, and accuracy can be estimated approximately as ()ˆ 3 2 / 5ρ κ≅ + (for κ ≥ .40,

Order 1, and substitutions favored over indels). We conclude that, other things being equal,

alignment kappa is not much affected by sequence length but that higher values can be

expected when more versus fewer codes are defined.

The values graphed in Figure 9 compare the effect of varying code variability and

sequence length when few codes are defined, keeping other factors constant (i.e., K = 3, α =

ω = 0, substitutions favored over indels, and priority Order 1). The topmost set of lines

represents µ = 100 and the bottommost µ = 25 (although the sets overlap). The lower,

middle, and upper lines in each set represent F = 4, 2, and 1, respectively. Alignment

kappas were a bit higher for longer sequences (i.e., µ = 100), as expected; likewise as

expected, values of alignment kappa became somewhat higher as code variability

decreased. We conclude that code variability has only a small effect on alignment kappa,

other parameters being constant. As shown in Figure 9, when codes are highly variable,

mean kappa is smaller than when they are equiprobable, but the effect diminishes as

sequence length increases; for long sequences, code variability has little effect on kappa,

especially for high levels of observer accuracy, and presumably would be even less for

values of K higher than the 3 assumed by Figure 9.

Summary and Recommendations

Sequences of discrete events, utterances, or some other unit that have been

independently coded by two coders using a set of mutually exclusive and exhaustive codes

can be aligned using a straightforward adaptation of Needleman and Wunsch’s (1970)

Observer Agreement for Event Sequences 26

algorithm, an algorithm initially devised for aligning nucleotide sequences. Once aligned,

an agreement kappa can be computed, which provides an estimate of observer agreement.

We have termed this alignment kappa; it differs from the usual Cohen’s kappa (1960) only

in that the upper-leftmost cell of the agreement matrix is a structural zero, which means that

expected frequencies cannot be computed with the usual formula but require an iterative

proportional fitting algorithm as is commonly used in log-linear analyses (Bakeman &

Robinson, 1994).

Using a computer program we devised for the purpose (program GSA, for Global

Sequence Alignment), we generated thousands of pairs of sequences, which were then

aligned and an alignment kappa computed. A number of parameters were varied, including

observer accuracy, latent sequence length, the number of codes defined, the variability of

the probabilities with which those codes were used, and the probabilities of false alarms and

missed events (which when not zero result in pairs of sequences whose lengths differ).

Other parameters varied were specific to the NW algorithm and included different cost

matrices and various priority orders.

From the simulations we concluded that under most reasonable circumstances,

observer accuracies of 90% or better result in alignment kappas of .60 or better. Other

things being equal, value of kappas were not strongly affected by sequence length, the

number of codes, or the variability in their probability, but were adversely affected, as

expected, as missed event and false alarm probabilities increased. We also concluded that,

in part to be conservative and in part to be realistic, that absent a strong rationale, cost

matrices and priority orders should favor substitutions (i.e., disagreements) over insertions

and deletions (i.e., missed events and false alarms).

Observer Agreement for Event Sequences 27

We also developed a second user-oriented computer program (which we call ELign

for Event Alignment) that aligns event sequences and computes alignment kappa. The user

provides two files in Sequential Data Interchange Standard format (SDIS, Bakeman &

Quera, 1995); the first file contains one or more event sequences as coded by one observer

and the second file contains the corresponding sequence or sequences as coded by a second

observer. ELign lets the user specify the cost matrices. Possibilities are: (a) indel costs =

2, substitution costs = 1, (b) indel costs = substitution costs = 1, (c) indel costs = 1,

substitution costs = 2, (d) indel costs = 1, substitution costs = 3 (meaning no substitutions

are permitted); and any of these default weights can be edited if the user has a reason for

preferring other weights. As noted earlier, we recommend (a), which is the program

default. ELign also lets specify priority orders (1–4), although again as noted earlier, we

recommend the program default Order 1, which favors substitutions.

ELign always displays the value of alignment kappa. Optionally, the user can also

request that all alignments, agreement matrices, and other matrices produced by the

alignment algorithm be displayed. ELign is written in Pascal (Borland’s Delphi); an

executable version of the program can be downloaded at no cost from the authors’ web sites

(www.gsu.edu/~psyrab/BakemanPrograms.htm and

www.ub.es/comporta/vquera/vquera.html).

Observer Agreement for Event Sequences 28

References

Abbott, A., & Barman, E. (1997). Sequence comparison via alignment and Gibbs

sampling: A formal analysis of the emergence of the modern sociological article.

Sociological Methodology, 27, 47-87.

Altschul, S. F., & Erickson, B. W. (1985). Significance of nucleotide sequence

alignments: A method for random sequence permutation that preserves dinucleotide and

codon usage. Molecular Biology and Evolution, 2 (6), 526-538.

Baeza-Yates, R. A., Gavaldà, R., Navarro, G., & Scheihing, R. (1999). Bounding the

expected length of longest common subsequences and forests. Theory of Computing

Systems, 32 (4), 453-466.

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to

sequential analysis (2nd ed.). New York: Cambridge University Press.

Bakeman, R., & Quera, V. (1995). Analyzing interaction: Sequential analysis with

SDIS and GSEQ. New York: Cambridge University Press.

Bakeman, R., Quera, V., McArthur, D., & Robinson, B. F. (1997). Detecting

sequential patterns and determining their reliability with fallible observers. Psychological

Methods, 2 (4), 357-370.

Bakeman, R., & Robinson, B. F. (1994). Understanding log-linear analysis with

ILOG: An interactive approach. Hilldsdale, NJ: Erlbaum.

Booth, H. S., Maindonald, J. H., Wilson, S. R., & Gready, J. E. (2004). An efficient

z-score algorithm for assessing sequence alignments. Journal of Computational Biology, 11

(4), 616-625.

Observer Agreement for Event Sequences 29

Boutet de Monvel, J. (1998). Extensive simulations for longest common

subsequences: Finite size scaling, a cavity solution, and configuration space properties.

European Physics Journal B, 7, 293-308.

Chvátal, V., & Sankoff, D. (1999). An upper-bound technique for lengths of

common subsequences. In D. Sankoff & J. Kruskal (Eds.), Time warps, string edits, and

macromolecules: The theory and practice of sequence comparison (2nd ed., p. 353-357).

Stanford, Ca.: CSLI Publications. (First edition 1983, Addison-Wesley)

Cohen, J. A. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20, 37-46.

Dančík, V. (1994). Upper bounds for the expected length of longest common

subsequences. Bulletin of the European Association for Theoretical Computer Science, 54,

248.

Deken, J. (1979). Some limit results for longest common subsequences. Discrete

Mathematics, 26, 17-31.

Deken, J. (1999). Probabilistic behavior of longest-common-subsequence length. In

D. Sankoff & J. Kruskal (Eds.), Time warps, string edits, and macromolecules: The theory

and practice of sequence comparison (2nd ed., p. 359-362). Stanford, Ca.: CSLI

Publications. (First edition 1983, Addison-Wesley)

Dijkstra, W. (2005). Sequence Viewer. Reference. Amsterdam: Department of Social

Research Methods, Vrije Universiteit. (Online:

http://home.fsw.vu.nl/w.dijkstra/downloads/Reference.pdf)

Dijkstra, W., & Taris, T. (1995). Measuring the agreement between sequences.

Sociological Methods and Research, 24 (2), 214-231.

Observer Agreement for Event Sequences 30

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence

analysis: Probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge

University Press.

Ewens, W. J., & Grant, G. R. (2001). Statistical methods in bioinformatics: An

introduction. New York: Springer.

Fichman, M. (1999). Finding patterns in sequences: Applying sequence comparison

techniques to study behavior processes. Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh PA. (Online:

http://www.gsia.cmu.edu/andrew/mf4f/work/acad99.pdf)

Fu, W. T. (2001). ACT-PRO action protocol analyzer: A tool for analyzing discrete

action protocols. Behavior Research Methods, Instruments, and Computers, 33 (2), 149-

158.

Galisson, F. (2000, August). Introduction to computational sequence analysis.

Tutorial, ISMB 2000, 8th International Conference on Intelligent Systems for Molecular

Biology, San Diego, Ca. (Online: http://www.iscb.org/ismb2000/tutorial_pdf/galisson4.pdf)

Gardner, W. (1995). On the reliability of sequential data: Measurement, meaning,

and correction. In J. M. Gottman (Ed.), The analysis of change (p. 339-359). Mahwah, NJ:

Erlbaum.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: Computer science

and computational biology. New York: Cambridge University Press.

Hardy, P., & Waterman, M. S. (1997). The sequence alignment sofware library at

USC. University of Southern California, Center for Computational Biology. (Online:

http://www-hto.usc.edu/software/seqaln/doc/seqalndoc.ps)

Observer Agreement for Event Sequences 31

Hirschberg, D. S. (1997). Serial computation of Levenshtein distances. In A.

Apostolico & Z. Galil (Eds.), Pattern matching algorithms (p. 123-141). New York: Oxford

University Press.

Kaye, K. (1980). Estimating false alarms and missed events from interobserver

agreement: A rationale. Psychological Bulletin, 88 (2), 458-468.

Kruskal, J. (1999). An overview of sequence comparison. In D. Sankoff & J.

Kruskal (Eds.), Time warps, string edits, and macromolecules: The theory and practice of

sequence comparison (2nd ed., p. 1-44). Stanford, Ca.: CSLI Publications. (First edition

1983, Addison-Wesley)

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F., &

Wooton, J. C. (1993). Detecting subtle sequence signals: A Gibbs sampling strategy for

multiple alignment. Science, 262 (5131), 208-214.

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions,

and reversals. Doklady Akademii Nauk SSSR, 163 (14), 845-848.

Mannila, H., & Ronkainen, P. (1997). Similarity of event sequences. In Proceedings

of the Fourth International Workshop on Temporal Representation and Reasoning.

TIME’97 (p. 136-139). Daytona Beach, Florida.

McVicar, D., & Anyadike-Danes, M. (2000). Predicting sucessful and unsuccessful

transitions from school to work using sequence methods. Northern Ireland Economic

Research Series.

Needleman, S. B., & Wunsch, C. D. (1970). A general method aplicable to the

search for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48, 443-453.

Observer Agreement for Event Sequences 32

Paterson, M., & Dančík, V. (1994). Longest common subsequences. In Proceedings

of 19th International Symposium Mathematical Foundations of Computer Science (p. 127-

142). Berlin: Springer.

Sankoff, D., & Kruskal, J. (Eds.). (1999). Time warps, string edits, and

macromolecules: The theory and practice of sequence comparison (2nd ed.). Stanford, Ca.:

CSLI Publications. (First edition 1983, Addison-Wesley)

Sankoff, D., & Mainville, S. (1999). Common subsequences and monotone

subsequences. In D. Sankoff & J. Kruskal (Eds.), Time warps, string edits, and

macromolecules: The theory and practice of sequence comparison (2nd ed., p. 363-365).

Stanford, Ca.: CSLI Publications. (First edition 1983, Addison-Wesley)

Scherer, S. (2001). Early career patterns: A comparison of Great Britain and West

Germany. European Sociological Review, 17 (2), 119-144.

Waterman, W. S. (1995). Introduction to computational biology: Maps, sequences

and genomes. London: Chapman and Hall.

Observer Agreement for Event Sequences 33

Figure captions

Figure 1.

A weight or cost matrix that weights all insertions, deletions, and substitutions equally.

Figure 2.

The three possible values for distance Drc between two subsequences. Cell(r–1,c–1)

indicates substitution of code s2c for s1r, (r–1,c) indicates deletion of code s1r, and (r,c–1)

indicates insertion of code s2c; the transformation which results in the lowest value for Drc is

selected.

Figure 3.

Dynamic programming table containing values of the distance, length, and pointer matrices

after applying the NW algorithm to sequences BBACDACDAB and BACAACABABD.

Rows and columns correspond to positions in sequence 1 and sequence 2, respectively; all

costs were set to 1. Each cell contains three entries: The first value is the generalized

Levenshtein distance between the subsequences up to positions r and c in the initial

sequences; the second value is the length of the subsequence that is common to both

subsequences, and the third is a pointer. Pointers indicate which neighbor cell contributed

to the computation of distance and length for the current cell. Gray cells with values in bold

show the cells in the trace back from the bottom right cell to the top left one.

Observer Agreement for Event Sequences 34

Figure 4.

Trace back for obtaining the alignment between sequences BBACDACDAB and

BACAACABABD.

Figure 5.

Agreement matrix when substitutions are allowed (all indel and substitution costs equal 1),

obtained from the alignment beween sequences BBACDACDAB and BACAACABABD.

Figure 6.

Mean values for kappa for varying observer accuracies, for identical indel and substitution

costs (= 1), and varying alignment priority orders. The topmost set of lines correspond to a

best case scenario (µ = 100, K = 20, F = 1, α = ω = 0); the middle set, to a worse case

scenario (µ = 25, K = 3, F = 4, α = ω = 0); and the bottommost set, to a worst case scenario

(µ = 25, K = 3, F = 4, α = ω = .20). Within each set, lines for priority orders 1 (lower line)

and 3 (upper line) are shown.

Figure 7.

Mean values for kappa for varying observer accuracies, for alignment priority order 1, and

varying sets of costs. The topmost set of (overlapping) lines correspond to a best case

scenario (µ = 100, K = 20, F = 1, α = ω = 0); the middle set, to a worse case scenario (µ =

25, K = 3, F = 4, α = ω = 0); and the bottommost set, to a worst case scenario (µ = 25, K =

3, F = 4, α = ω = .20). Within each set, lines for different costs are shown: indel = 2 and

Observer Agreement for Event Sequences 35

substitutions = 1 (lower line); indel = substitution = 1 (middle line); and indel =1 and

substitutions = 2 (upper line).

Figure 8.

Mean values for kappa for varying observer accuracies and sequence lengths, for alignment

priority Order 1, indel costs = 2 and substitution costs = 1, and equiprobable codes (F = 1);

false alarms and missing events are not possible (α = ω = 0). The topmost set of lines

correspond to K = 20, and the bottommost to K = 3. Within each set, lines represent

different latent sequence lengths, µ = 25, 50, and 100 (lower, middle, and upper lines,

respectively; separate lines are not always visible).

Figure 9.

Mean values for kappa for varying observer accuracies and degrees of code variability, for

K = 3 codes, priority Order 1, and indel costs = 2 and substitution costs = 1; false alarms

and missing events are not possible (α = ω = 0). Continuous lines represent µ = 100, and

dashed lines µ = 25. Lower, middle, and upper lines in each set represent F = 4, 2, and 1,

respectively.

Observer Agreement for Event Sequences 36

Figure 1

 delete c1 = A c2 = B c3 = C c4 = D

insert — 1 1 1 1

c1 = A 1 — 1 1 1

c2 = B 1 1 — 1 1

c3 = C 1 1 1 — 1

c4 = D 1 1 1 1 —

Observer Agreement for Event Sequences 37

Figure 2

 c – 1 s2c = c

r – 1 Dr–1,c–1 + w(s1r,s2c)

Dr–1,c + w(s1r,0)

s1r = r Dr,c–1 + w(0,s2c)
 Drc

Observer Agreement for Event Sequences 38

Figure 3

 S2

 S1
delete s21=B s22=A s23=C s24=A s25=A s26=C s27=A s28=B s29=A s2,10=B s2,11=D

insert 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0

s11= B 1 0 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1

s12= B 2 0 1 1 1 2 2 2 3 2 4 2 5 2 6 2 6 2 7 2 8 2 9 2

s13= A 3 0 2 1 1 2 2 3 2 3 3 3 4 3 5 3 6 3 6 3 7 3 8 3

s14= C 4 0 3 1 2 2 1 3 2 3 3 4 3 4 4 4 5 4 6 4 7 4 8 4

s15= D 5 0 4 1 3 2 2 3 2 4 3 4 4 5 4 5 5 5 6 5 7 5 7 5

s16= A 6 0 5 1 4 2 3 3 2 4 2 5 3 5 4 6 5 6 5 6 6 6 7 6

s17= C 7 0 6 1 5 2 4 3 3 4 3 5 2 6 3 6 4 6 5 6 6 7 7 7

s18= D 8 0 7 1 6 2 6 3 4 4 4 5 3 6 3 7 4 7 5 7 6 7 6 8

s19= A 9 0 8 1 7 2 6 3 5 4 4 5 4 6 3 7 4 8 4 8 5 8 6 8

s1,10= B 10 0 9 1 8 2 7 3 6 4 5 5 5 6 4 7 3 8 4 8 4 9 5 9

Observer Agreement for Event Sequences 39

Figure 4

Cell Pointer S1 S2 Transformation

(10,11) - D insertion

(10,10) B B -

(9,9) A A -

(8,8) D B substitution

(7,7) - A insertion

(7,6) C C -

(6,5) A A -

(5,4) D A substitution

(4,3) C C -

(3,2) A A -

(2,1) B B -

(1,0) B - deletion

(0,0) - - -

Observer Agreement for Event Sequences 40

Figure 5

Observer 2
Observer 1 – A B C D Sum

– 0 1 0 0 1 2

A 0 3 0 0 0 3

B 1 0 2 0 0 3

C 0 0 0 2 0 2

D 0 1 1 0 0 2

Sum 1 5 3 2 1 12

Observer Agreement for Event Sequences 41

Figure 6

0.20

0.40

0.60

0.80

1.00

0.70 0.80 0.90 1.00

Observer accuracy

M
ea

n
ka

pp
a

Observer Agreement for Event Sequences 42

Figure 7

0.20

0.40

0.60

0.80

1.00

0.70 0.80 0.90 1.00

Observer accuracy

M
ea

n
ka

pp
a

Observer Agreement for Event Sequences 43

Figure 8

0.20

0.40

0.60

0.80

1.00

0.70 0.80 0.90 1.00

Observer accuracy

M
ea

n
ka

pp
a

Observer Agreement for Event Sequences 44

Figure 9

0.20

0.40

0.60

0.80

1.00

0.70 0.80 0.90 1.00

Observer accuracy

M
ea

n
ka

pp
a

