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Abstract 

When sequences of discrete events, or other units, are independently coded by two 

coders using a set of mutually exclusive and exhaustive codes, but onset times are not 

preserved, it is often unclear how pairs of protocols should be aligned, yet such alignment is 

required before Cohen’s kappa, a common agreement statistic, can be computed.  We 

describe a method—based on the Needleman and Wunsch (1970) algorithm originally 

devised for aligning nucleotide sequences—for optimally aligning such sequences, and 

offer evidence from a simulation study regarding the behavior of alignment kappa under a 

variety of circumstances, including observer accuracy, number of codes, sequence length, 

code variability, and parameters governing the alignment algorithm.  We conclude that: (a) 

under most reasonable circumstances, observer accuracies of 90% or better result in 

alignment kappas of .60 or better; (b) generally, alignment kappas are not strongly affected 

by sequence length, the number of codes, or the variability in their probability; (c) 

alignment kappas are adversely affected when missed events and false alarms are posible; 

and, (d) cost matrices and priority orders used in the algorithm should favor substitutions 

(i.e., disagreements) over insertions and deletions (i.e., missed events and false alarms). 

Two computer programs were developed: GSA (for Global Sequence Alignment), for 

carrying out the simulation study, and ELign (for Event Alignment), a user-oriented program 

that computes alignment kappa and provides the optimal alignment given a pair of event 

sequences.  

.  
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Observer Agreement for Event Sequences:   

Methods and Software for Sequence Alignment and Reliability Estimates 

 

Observer reliability is a central concern whenever behavior is coded by trained 

observers.  If different observers who view the same stream of behavior and code it using 

the same coding scheme obtain data that differ substantially, then we cannot be confident 

about the objectivity or quality of their data, and hence cannot trust results from analyses 

performed on them.  When behavior is observed continuously and coded sequentially, 

investigators usually demand point-by-point, or local, agreement (Bakeman & Gottman, 

1997), using a set (or sets) of mutually exclusive and exhaustive codes.  For example, the 

codes quiet alert, fussy, crying, rapid-eye movement sleep, and deep sleep could be used to 

characterize an infant's state.  However, such a set of codes can be applied in more than one 

way.  For some of these ways, methods for determining observer agreement are relatively 

straightforward, but for one relatively common and simple way of assigning codes, methods 

are problematic.  In the present paper, we consider this problem and offer a solution. 

Before presenting the problematic application, it is useful to consider two 

unproblematic ways of assigning codes.  Coders could be presented with a transcript, and 

asked to assign codes to each turn of talk (or other unit) identified in the transcript; or 

coders could be presented with a video recording of an infant and asked to identify onset 

and offset times (e.g., to the nearest second) of the different infant states, in which case we 

would think of the data as successive time units to which codes had been assigned 

(Bakeman & Quera, 1995).  In such cases, unitizing occurs before coding, and coders need 

only assign codes to the specified units.  For cases that fit these last two applications, it has 
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become conventional to report Cohen’s kappa, an index that corrects for chance agreement 

and that assesses the agreement with which a set of mutually exclusive and exhaustive 

codes has been applied (Bakeman & Gottman, 1997; Cohen, 1960).   

However, more simply, coders could be presented with a video recording and asked 

to identify events as they occur in sequence, without noting any information regarding time.  

Thus coders simultaneously unitize and code.  Cases that fit this application, which on its 

face seems quite simple, are in fact more complex with respect to determining observer 

agreement than the first two.  The complexity results because two observers may segment 

the stream of behavior differently, thus even the number of events coded might differ and 

their alignment in any case would be ambiguous.  As Bakeman and Gottman (1997) wrote: 

[determining agreement about unitizing when] coding events, without any 

time information, is in some ways the most problematic ...  If observers note 

only the sequence of events ...  then determining the agreement as to unit 

boundaries is more difficult.  The two protocols would need to be aligned, 

which is relatively easy when agreement is high, and much more difficult 

when it is not, and which requires some judgment in any case (p.  69). 

Thus determining agreement for what Bakeman and Quera (1995) call event sequences (a 

single stream of coded events without time information), and which they characterize as the 

simplest of the sequential data types they define, is a more difficult matter than for 

seemingly more complex sequential data types.   

In this paper, we consider the issue of observer agreement for event sequences.  First 

we describe methods for aligning such sequences, then we consider how their agreement 
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might best be assessed, and finally we offer evidence from simulation studies regarding the 

behavior of the agreement index we recommend.   

Sequence Alignment 

Event sequences are simply strings of codes.  Two different strings of codes, each 

produced by an observer independently coding the same stream of behavior, may well differ 

in length (because the observers unitized differently), so the first question is, how should 

these two sequences be aligned—which codes from Observer 1 should be matched with 

which codes from Observer 2—so that we can begin to assess the extent of agreement.  

Desired is an algorithm so that alignment is not left to individual judgment, as Bakeman and 

Gottman (1997) suggested might be necessary.  Such an algorithm, one that determines the 

optimal global alignment between two sequences by means of dynamic programming, is 

presented here. 

The algorithm is adopted from sequence alignment and comparison techniques that 

are routinely used by molecular biologists to find similarities among DNA sequences in 

order to classify them, and to search for patterns in the sequences themselves (Durbin, 

Eddy, Krogh, & Mitchison, 1998; Gusfield, 1997; Sankoff & Kruskal, 1999; Waterman, 

1995).  The techniques have also been used in speech processing, error detection and 

correction in computer science, and stratigraphic analysis (for a review, see Kruskal, 1999), 

for comparison of content in sociological research papers (Abbott & Barman, 1997), and for 

career path similarity analysis (McVicar & Anyadike-Danes, 2000; Scherer, 2001). An 

alternative method for computing agreement between sequences was developed by Dijkstra 

& Taris (1995), although it does not guarantee optimal matching. Fichman (1999) presented 

a paper on the potential usefulness of a specific sequence alignment procedure for global 
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matching of two event sequences corresponding to partners in an interaction; and more 

recently, Fu (2001) developed ACT-PRO, a computer program that analyzes sequences of 

behavioral events using measures of sequence similarity based on alignment algorithms.  To 

our knowledge, the use of these alignment techniques for the assessment of observer 

reliability has not been systematically explored before, although Dijkstra (2005) included 

one common algorithm as a tool for comparing sequences in Sequence Viewer, a computer 

program for the analysis of sequences for sociological events.   

A Sequence Alignment Algorithm 

First, some notation and terminology:  Let C be a coding scheme: C = { c 1, c 2, …, 

cK}, where ci is a code representing a discrete behavioral state, and K  is the number of 

different, exhaustive and mutually exclusive codes; for example, a coding scheme 

characterizing an infant’s state, C = {“quiet alert” (code A), “fussy or crying” (code B), 

“rapid-eye movement sleep” (code C), “deep sleep” (code D)}.  Assume that two observers 

independently code the following event sequences, S1 = <s11s12…s1m> and 

S2 = <s21s22…s2n>, where m and n are the lengths of the sequences; for example, 

S1 = <BBACDACDAB> and S2 = <BACAACABABD>.  In general, m ≠ n but, even if m = 

n, we cannot take for granted that s1i is aligned or paired with s2i for all i.   

In order to align sequence S1 and sequence S2, some kind of correspondence 

between their codes must be established, that is, the sequences need to be globally aligned.  

Alignment proceeds step-by-step, by considering the transformations required to convert 

one sequence into the other; the more transformations required, the greater we say the 

distance between the two sequences is.  We begin with S1 and step-by-step apply successive 

transformations that build a new sequence; when done, the new sequence is S2 and a key 
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question is, how many steps were required to effect this transformation.  At each step, there 

are four possibilities: 

1. an agreement or identity transformation:  a code from S1 is paired with an 

identical code from S2 and the common code is inserted in the new sequence; 

2. a disagreement or substitution:  a code from S1 is paired with a different code 

from S2 and the S2 code is inserted in the new sequence; 

3. a deletion:  a code from S1 is paired with no code from S2 and a hyphen 

(instead of the S1 code) is inserted in the new sequence; and  

4. an insertion:  no code from S1 is paired with a code from S2 and the S2 code 

in inserted in the new sequence (but a hyphen is inserted in the S1 sequence).  From the 

point of view of Observer 1, a deletion is an error of omission and an insertion is an error of 

commission on the part of Observer 2.   

Given two event sequences, usually many different global alignments are possible. 

In fact, given two sequences with lengths m and n, the number of possible global 

alignments, if code substitutions but not indels are permitted, is 
min( , )

m n
m n
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 (Ewens & 

Grant, 2001), which is the lower bound for the total possible number of alignments that 

permit both indels and substitutions (see also Waterman, 1995); for example, if m = n = 

100, that lower bound equals 58200
9 10

100
⎛ ⎞

≅ ⋅⎜ ⎟
⎝ ⎠

, and therefore looking for the best alignment 

by listing them all is essentially an impossible task. Our objective is to determine an optimal 

alignment, one which requires the fewest possible transformations and that results in the 

highest number of matching codes.  Results depend on whether we permit or disallow 

substitutions (more on this later); in the first case disagreements are permitted but in the 
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second, only errors of omission and commission are allowed.  For example, for sequences 

S1 and S2, two possible global alignments, among others, are (the first permits, whereas the 

second disallows disagreements):  

     BBACDAC-DAB-          BBAC-DAC--DAB- 
      |||:|| :||            |||  ||   ||  
     -BACAACABABD          -BACA-ACAB-ABD 

These alignments were obtained by means of a dynamic programming algorithm that 

provides optimal alignments, and which is described subsequently.  For both of these 

alignments, hyphens in the first sequence indicate that codes are inserted in the second one, 

and hyphens in the second sequence indicate that codes are deleted from the first one.  

Vertical lines indicate identity matches, and colons indicate substitution matches.   

Longest Common Subsequence 

When substitutions were allowed, 5 transformations were required and the longest 

common subsequence of identical or similar codes was BAC[DA]AC[DB]AB or 9 codes 

long, where [DA] indicates either D or A from the first and second sequences, respectively; 

likewise [DB].  When substitutions were disallowed, 7 transformations were required and 

the longest common subsequence of identical codes was BACACAB or 7 codes long.  

When two sequences are optimally aligned, the longest common subsequence of agreement 

(LCSA) is obtained (e.g., Hirschberg, 1997; Needleman & Wunsch, 1970).  If 

disagreements are permitted, then the LCSA consists of identical or similar codes; if they 

are not, then the LCSA consists of identical codes only. In both cases, the length of the 

LCSA is denoted Λ.  Other more complex sequence alignment methods exist (e.g., multiple 

global alignment of many sequences, Gusfield, 1997; Lawrence, Altschul, Boguski, 

Neuwald, & Wooton, 1993), but because we are interested in finding the distance between 
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two sequences obtained by independent observers, we will focus on algorithms and 

measures for pairwise, or simple global alignment of two sequences. 

Distance Between Sequences 

The distance between two sequences (δ) can be defined as the number of code 

insertions (I), deletions (D), and substitutions (S) that are required to convert one sequence 

into the other, that is, δ = I + D + S (Gusfield, 1997; Kruskal, 1999; Levenshtein, 1965).  

The Levenshtein distance (also known as edit distance) between two sequences is defined as 

the minimum number of code insertions, deletions, and substitutions necessary in order to 

convert one sequence into the other (but see Hirschberg, 1997); thus, it is the minimum 

number of transformations required to convert one sequence into the other.  The smaller the 

Levenshtein distance, the greater the LCSA length will be. 

Costs and generalized Levenshtein distance.  Every possible transformation can be 

assigned a particular cost or weight.  For a coding scheme with K codes, a (K+1) × (K+1) 

cost matrix (or weight matrix, or scoring function; e.g., Durbin et al., 1998; Giegerich & 

Wheeler, 1999) is defined, W = {wij}, for i = 0, 1, … K, and j = 0, 1, … K, where wij > 0 (i 

> 0, j > 0) is the cost of substituting code j for code i; wi0 (i > 0) is the cost of deleting code 

i; and w0j (j > 0) is the cost of inserting code j.  Substitution costs along the upper-left to 

lower-right diagonal of W are zero, by definition.  Then the generalized Levenshtein 

distance (∆ or GLD), or alphabet-weight edit distance (Gusfield, 1997), is the sum of the 

number of insertions, deletions, and substitutions, weighted by their corresponding costs: 

0 0
1 1 1

s t u u

s I t D u S

j i i j
s t u

w w w
= = =

= = =

∆ = + +∑ ∑ ∑   (2) 
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where 0 sj
w , 0ti

w , and 
u ui jw  are the costs of the sth insertion, the tth deletion, and the uth 

substitution in the sequences, respectively.  If wI =  wD =  wS = 1 (all insertions, deletions, 

and substitutions are assigned identical costs), then ∆ = I + D + S.  If wI = wD = 1 and wS = 

2, then a code insertion followed by a code deletion has the same cost as a code substitution.  

If  wI = wD = 1 and wS > 2, then substitutions will not occur; an insertion followed by a 

deletion would cost less than a substitution.  The distance between sequences defines a true 

metric space of sequences, that is, the Levenshtein distance has the reflexive, symmetrical, 

and triangle inequality properties (Waterman, 1995, p. 185).  Costs can be chosen according 

to specific theoretical assumptions, or be estimated from the data.  In any case, costs are 

usually symmetrical, that is, wij = wji.  Costs can be estimated so that codes that occur rarely 

have higher indel costs than codes that occur often.  As a general procedure, Mannila and 

Ronkainen (1997) propose assigning empirical indel costs that are inversely proportional to 

the code simple or unconditional frequencies in the sequences being compared; 

alternatively, costs could be assigned as directly proportional to the codes unconditional 

frequencies, because mistakes like inserting or deleting common codes, it could be argued, 

should have more weight on ∆  than mistakes like inserting or deleting rare codes, because 

it is assumed that detecting common events is easier than detecting rare events.  

Weight Matrices 

The weight matrix permits us to give a different weight for each insertion, deletion, 

and substitution, which provides far more flexibility than may ever be desired or desirable.  

In the context of DNA sequences, various schemes for proportional weights, as just 

described, might make sense, but in the context of observer agreement, we think that almost 

always, absent a strong rationale, weights should be limited to simple integers.  Here we 
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consider three possibilities.  All agreements on the diagonal are set to zero, by definition.  In 

addition:  (a) all other weights are set to one (see Figure 1), thus counting disagreements, 

omissions, and commissions equally; (b) omissions and commissions set to one but 

disagreements are set to two, thus counting a disagreement as equivalent to a series of two 

omission-commission errors; and (c) omissions and commissions set to two but 

disagreements are set to one, thus counting disagreements as half as serious as omission and 

commission errors.  Of these three, we think the last may best reflect what investigators 

expect of observer agreement. 

In a similar fashion, while disallowing substitutions is discussed as an option in the 

literature we have cited, it is one that we would rarely recommend when observer 

agreement is considered.  Almost always, observers are as likely, if not more likely, to 

disagree about how to categorize an event as to commit errors of omission or commission, 

so it rarely makes sense to disallow disagreements.  Nonetheless, comparing results when 

disagreements are permitted with results when disagreements are disallowed, as we 

occasionally do in this article, can be instructive.  Agreement will be worse when 

disagreements are not allowed, and so this case represents a lower bound on agreement.   

Needleman and Wunsch Algorithm 

The algorithm that provides the optimal matching or alignment between two 

sequences was developed independently by several researchers from different fields during 

the 1970s (Kruskal, 1999), and has been re-invented since then (e.g., Mannila & Ronkainen, 

1997).  Molecular biologists call it the Needleman and Wunsch (1970) algorithm (hereafter 

referred to as NW).  The NW algorithm belongs to a broad class of methods known as 

dynamic programming, in which the solution for a specific subproblem can be derived from 
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the solution for another subproblem immediately preceding it.  Regarding sequence 

alignment, using dynamic programming means that, in order to find the alignment that is 

optimal, there is no need to check all possible alignments between the two sequences but 

only a very small portion of them.  Proceeding step by step, at each step three different 

possible subalignments that would add to the subalignments accumulated from previous 

steps are considered and two discarded (why three will be described shortly).  Therefore, at 

every step two thirds of the possible subalignments are discarded.  As a consequence, the 

method is exact (that is, it guarantees the optimal solution) without being exhaustive (that is, 

it does not explore all possible alignments; Galisson, 2000). 

The goal of the algorithm is to determine an optimal alignment, that is, the steps 

required to transform one sequence into the other, defined as the alignment with the lowest 

generalized Levenshtein distance and longest common subsequence.  Thus the algorithm 

uses the cost matrix described earlier, and different costs will result in different alignments.  

The algorithm utilizes three additional matrices, one to accumulate distances, one to 

accumulate lengths, and one for pointers, as described shortly.  Each of these matrices has 

m+1 rows and n+1 columns, indexed 0, 1, … m, and 0, 1, … n, respectively, where m is the 

length of sequence S1 and n the length of S2.  Row 0 indicates insertions, Rows 1 to m are 

labeled with the codes in the S1 sequence, Column 0 indicates deletions, and Columns 1 to n 

are labeled with the codes in the S2 sequence.  Which sequence is labeled S1 and which S2 is 

arbitrary; results are the same no matter which sequence is labeled S1.   

The distance matrix (D) accumulates generalized Levenshtein distances; in 

particular, when complete Dmn =  ∆ (GLD) for S1 and S2.  The length matrix (L) 

accumulates common subsequence lengths; in particular, when complete Lmn =  Λ (the 
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length of the LCSA) for S1 and S2.  The pointer matrix (P), as described shortly, indicates 

which of three preceding cells—for cell(r,c) preceding cells are cell(r,c–1), cell(r–1,c–1), 

and cell(r–1,c), indicated with , , and , respectively—contributes to the computation of 

Lrc and Drc.  Pointers are used to build the alignment by tracing them back from cell (m,n). 

The NW algorithm works as follows.  First, insertion and deletion lengths are 

initialized to zero, thus L00 = Lr0 = L0c = 0.  Second, insertion and deletion distances are 

initialized to their accumulative costs, thus D00 = 0, Dr0 = Dr–1,0 + w(s1r,0), D0c = D0,c–1 + 

w(0,s2c), where w(s1r,0) is the cost of deleting the element at position r of sequence S1, and 

w(0,s2c) is the cost of inserting element at position c of sequence S2 (E.g., D04 is the 

accumulative cost of inserting elements s21, s22, s23, and s24; similarly, D30 is the 

accumulative cost of deleting elements s11, s12, and s13).  And third, insertion and deletion 

pointers are initialized so that  Pr0 =  and P0c = .   (For the expressions in the preceding 

sentences, r = 1 to m and c = 1 to n).  After Row 0 and Column 0 are initialized, iterations 

of the NW algorithm then fill in the remaining cells, beginning with Row 1 and considering 

Columns 1 to n, then Row 2, etc. (or vice versa, beginning with Column 1 and considering 

Rows 1 to m).   

For each cell examined, the distance between the subsequences up to that point (i.e, 

s11…s1r and s21…s2c), is computed as: 

Drc = min[Dr–1,c–1 + w(s1r,s2c),  Dr–1,c + w(s1r,0),  Dr,c–1 + w(0,s2c)] (3) 

In other words, at cell(r,c) we select among three possible transformations in our ongoing 

effort to transform S1 into S2.  We can either substitute code s2c for s1r, or delete code s1r, or 

insert code s2c.  The transformation selected is the one that results in the lowest generalized 

Levensthein distance for the subsequence up to this point.  Note that there are two kinds of 

substitution.  One occurs when s2c = s1r (an agreement); the weight is zero and so they will 
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always be matched.  The other occurs when s2c ≠ s1r (a disagreement); these two codes are 

matched if substituting one for the other increases the generalized Levensthein distance less 

than deleting the first code or inserting the second one.  The three possibilities at cell(r,c) 

are illustrated in Figure 2. 

Lrc and Prc are updated accordingly.  If substitution was chosen, then Prc =   and Lrc 

=  Lr–1,c–1 + 1 because one more code was added to the common subsequence obtained at 

cell(r–1,c–1).  If insertion was selected, then Prc =   and Lrc =  Lr,c–1 because no code was 

added to the common subsequence obtained at cell(r,c–1).  If deletion was chosen, then Prc 

=   and Lrc =  Lr–1,c because no code was added to the common subsequence obtained at 

cell(r–1,c).   

When transformations have equal costs, one must be selected.  The one selected can 

affect the specific alignment, but the generalized Levenshtein distance and the length of the 

common subsequence are not affected, so in this sense the choice is inconsequential.  Still, 

to effect the algorithm we need to break ties, for which purpose we prioritize 

transformations (see SEQALN software, Hardy & Waterman, 1997).  Four possible priority 

orders are:   

1. substitution, deletion, insertion; 

2. substitution, insertion, deletion; 

3. deletion, substitution, insertion; and 

4. insertion, substitution, deletion.   

Order 3 provides the upper envelope, and Order 4 the lower envelope, in terms of the trace 

described below, of optimal alignments.  Orders 1 and 2 favor substitution.  Because we 

think disagreeing as to an event is at least as common if not more so than errors of omission 
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and commission, and because generalized Levenshtein distance and length of the common 

subsequence are not affected in any case, as a general rule we arbitrarily recommend Order 

1, although later we consider the effect of making other choices. 

Application of the NW algorithm to sequences S1 and S2, with all costs (i.e., 

insertion, deletion, and substitution) identical and equal to 1, and priority Order 1, gives the 

results shown in Figure3.  This is the alignment result (the one permitting disagreements) 

presented earlier for those sequences,  

     BBACDAC-DAB-   
      |||:|| :||    
     -BACAACABABD   

but now we can see how the results—∆ = 5 and Λ = 9—were obtained.  In general, 

application of the NW algorithm provides the generalized Levenshtein distance (∆ = Dmn) 

and the length of the longest common subsequence (Λ = Lmn) for two sequences, whereas 

the P matrix is used to generate the alignment, tracing the pointers back from cell(m,n).  As 

an example, Figure 4 shows how the alignment is generated from the pointers in Figure 3.   

Measures of Agreement From Pairwise Global Sequence Alignment 

The NW algorithm yields two indices that could be used as measures of observer 

agreement for event sequences, the length of the longest common subsequence of 

agreement and the generalized Levenshtein distance, symbolized here with Λ and ∆, 

respectively.  The upper bounds for both indices vary; specifically, the upper bound for Λ is 

the minimum of m and n, that is, the length of the shorter sequence, whereas the upper 

bound for ∆ depends on sequence lengths and the specific costs used as well. When 

assessing observer agreement, investigators are usually interested in knowing how a 

computed measure of agreement departs from chance agreement. However, the distributions 
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of the measures of chance agreement provided by the NW algorithm are “far from being 

completely understood” (Waterman, 1995, p.  255), although expected values and bounds of 

Λ  and ∆  for random sequences of infinite or very big lengths have been estimated, when 

code substitutions are disallowed (e.g., Baeza-Yates, Gavaldà, Navarro, & Scheihing, 1999; 

Boutet de Monvel, 1998; Chvátal & Sankoff, 1999; Dančík, 1994; Deken, 1979, 1999; 

Paterson & Dančík, 1994; Sankoff & Mainville, 1999). While those results are valid only 

for very large sequence lengths m and n, event sequences recorded during observation 

sessions are often not very long; common lengths are in the hundreds, and seldom in the 

thousands. For that reason, we usually cannot use expected values of chance agreement for 

infinite n as a reference.  

Therefore, in order to assess observer agreement, once sequences are aligned, their 

agreements and disagreements can be tallied in a (K+1) × (K+1) agreement matrix of the 

sort used to compute Cohen’s kappa.  The first row indicates insertions (i.e., events not 

coded by Observer 1 that were coded by Observer 2), and the first column indicates 

deletions (i.e., events coded by Observer 1 that were not coded by Observer 2), which 

accounts for the K+1 dimension.  Such a table is shown in Figure 5 for the alignment 

between S1 and S2 given previously.  A kappa statistic can be defined in the usual way 

(Cohen, 1960), as the probability of observed agreement minus chance agreement divided 

by one minus chance agreement, with one qualification:  Because the cell in the upper-left 

corner is a structural zero (once sequences are aligned, no event can be coded as missed by 

both observers), the agreements expected by chance need to be computed with an iterative 

proportional fitting algorithm and not the usual closed-form formula.  Thus for clarity we 
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term this statistic alignment kappa and not Cohen’s kappa; for the data in Figure 5, 

alignment kappa is .48. 

When substitutions are not allowed, the matter is more complex—although as 

discussed earlier we think this constraint would rarely be imposed when considering 

observer agreement.  With no substitutions permitted, all cells indicating disagreement are 

structural zeros, and the usual computations for expected agreement do not apply.  With this 

pattern of structural zeros, the constraints are such that for the model of quasi-independence 

an iterative proportional fitting algorithm, as is often used for log-linear analysis (e.g., 

Bakeman & Robinson’s ILOG program, 1994), computes expected frequencies identical to 

those observed; thus the value of kappa is zero.  More general solutions, based on iterative 

procedures and permutations, for evaluating how a computed measure of agreement 

between sequences departs from chance agreement have been proposed (Altschul & 

Erickson, 1985; Booth, Maindonald, Wilson, & Gready, 2004). 

Values of Alignment Kappa Under Various Simulated Conditions 

In a previous paper (Bakeman, Quera, McArthur, & Robinson, 1997), we used 

numerical simulation to study values of observer agreement for timed-event sequences (e.g., 

Cohen’s kappa) generated by observers of known reliability, as specified in a simulation 

program. Thus simulation provides an opportunity denied us in actual situations; it lets us 

know (or specify) the theoretical reliability of observers before we attempt to measure such 

reliability.  Likewise, regarding event sequences, it is especially interesting to know how the 

agreement measures provided by the NW algorithm are related to theoretical observer 

reliability (i.e., reliability set by simulation) because this permits us to judge which values 



Observer Agreement for Event Sequences     18 

of alignment kappa, computed once the observed event sequences are aligned, can be 

reasonably regarded as indicators of good reliability.  

Simulation Parameters 

For the simulation, we define observer reliability as accuracy, that is, the probability 

that, given that an event has occurred, the observer detects and codes it correctly (Gardner, 

1995; Bakeman et al., 1997). Given a coding scheme with K exhaustive and mutually 

exclusive codes, a (K +1)×(K +1) matrix { }ijρ=R  of conditional probabilities is defined, 

with both rows and columns numbered 0 to K.  For i > 0, j > 0, ijρ is the probability that the 

observer records code cj given that a behavior that should be coded ci has occurred.  Each 

row in matrix R sums to 1; diagonal cells are accuracies and off-diagonal cells are errors.  

Elements in column 0 are missed event probabilities (e.g., Kaye, 1980), or omission errors; 

that is, 0iρ  is the probability that the observer fails to detect a behavior that should be coded 

ci.  Elements in row 0 are false alarm probabilities (Kaye, 1980), or comission errors, that is, 

0 jρ  is the probability that the observer codes cj given that no behavior has actually 

occurred.  For reliable observers, iiρ  are close to 1 for all i ( 00ρ  = 0 by definition).  An 

observer can be more reliable with respect to certain behaviors, and less reliable with 

respect to certain others, in which case diagonal elements are not identical.  Also, an 

observer who fails to code a behavior correctly may favor some false codings more than 

others, in which case off-diagonal elements within a row are not identical.  Finally, when 

two fallible observers are compared, it can be assumed that both are equally reliable or not; 

in the former case, one single matrix R describes both observers, while in the latter, two 

different reliability matrices should be assumed. 
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Two more probabilities are required for the simulation: (a) the unconditional 

probability of a false alarm (α), that is, the probability that the observer codes any behavior 

when no behavior has actually occurred—when a false alarm occurs, the observer records a 

code cj with probability 0 jρ ; and  (b) the probability of missing an event ( 0i iε ρ= ), that is, 

the probability that the observer codes nothing given that a behavior that should have been 

coded ci has occurred. When two fallible observers are compared, it can be assumed that 

both α  and iε  are identical or different for the two observers. If we assume, as we do here, 

that both observers have the same accuracy ρ , that it is the same for all codes, and that all 

codes can be missed with identical probability ε , then the cells in the reliability matrix R 

are set as follows. (a) Diagonal cells, iiρ ρ= .  (b) Cells in column zero (missed events), 

0 (1 )iρ ε ρ ω= = − , where 0 1ω≤ ≤  is a parameter; therefore, we define the probability of 

missing an event as a decreasing function of the accuracy that is associated with that event; 

for example, given .20ω = , values for ε  are .08, .06, .04, .02, and 0 when ρ  equals .60, 

.70, .80, .90, and 1.00, respectively. (c) Cells in row zero (false alarms), 0 j jpρ = , that is, 

the code unconditional probabilities.  (d) Rest of off-diagonal cells, 

(1 )(1 ) /( 1)ij Kρ ρ ω= − − − .  

Global Sequence Alignment (GSA) Simulation Program 

In order to understand how alignment kappa is related to observer reliability, we 

developed a computer program (GSA, Global Sequence Alignment for Windows, available 

from the authors upon request) for carrying out several series of simulations, guided by 

values for variables we have used before (Bakeman et al., 1997). Specifically, we 

considered values for observer accuracy (ρ) of .60, .70, .80, .90, and 1.00; sequence lengths 
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(µ) of 25, 50, and 100; values for the number of codes (K) of 3, 5, 10, and 20; and 

equiprobable, moderately variable, and highly variable simple probabilities for those codes, 

which were computed according to this formula (see Bakeman et al., 1997, Table 1): 

1 2( 1)( 1) /( 1)( , )i
F i Kp F K

FK
+ − − −

=  (4) 

where F is a factor governing variability of code unconditional probabilities, and ( , )ip F K  

is the simple probability of code ci (for all i, 1 through K ) as a function of factor F and 

number of codes K. When F = 1, codes are equiprobable, and (1, ) 1/ip K K= for all codes.  

The higher the F the higher the variability. In the simulations, F = 1, 2, and 4 were used for 

equiprobable, moderately variable, and highly variable probabilities, respectively.  For 

example, when K = 5 and F = 4, probabilities are .050, .125, .200, .275, and .350. Rarely 

would probabilities be so neatly graduated in an actual investigation, but the differences 

between smallest and largest probabilities represented by our three cases should provide 

some guidance when investigators encounter a similar range of differences in their simple 

probabilities.   

Each simulation run started by generating a random latent event sequence with 

specified length µ for number of codes K with variability F; this represents the true state of 

affairs.  Then, two observed or manifest event sequences were generated according to 

specified parameters for ,  ,  and ρ α ω ; these represent the work of fallible coders.  Given a 

latent sequence, in order to generate codes for one observed sequence, for every code ci in 

the latent sequence, first an extra code or false alarm may be generated with probability α ; 

extra codes are sampled according to their simple probabilities pj .  Then, the latent code 

may generate either one observed code with probability 1 (1 )ρ ω− − , or it may be missed 
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with probability (1 )ε ρ ω= − , not generating a code at all; if an observed code must be 

generated, then it is sampled according to the simple code probabilities. It can be 

demonstrated that the expected length of a manifest sequence equals [ ]1 (1 )µ α ρ ω+ − − . In 

our simulations we considered values of α  = 0 and .2;  and ω  = 0 and .2. Therefore, the 

lengths of the manifest sequences ranged, in average, from 23 (when 

25,  .6, 0, .2µ ρ α ω= = = = ) to 120 (when 100,  1, .2, .2µ ρ α ω= = = = ). In each 

simulation the expected length of both manifest sequences was identical, because the same 

reliability parameters were assumed for the two observers; however, when both false alarms 

and missing events were possible, the actual lengths of the two manifest sequences could 

differ, as often happens with observers. The pair of manifest sequences was then aligned 

with the NW algorithm, an agreement matrix was obtained, and alignment kappa was 

computed for it. Finally, the mean alignment kappa was calculated for all the pairs of 

sequences that had been generated under the same conditions.  

In order to align the sequences, three different costs matrices and four priority orders 

were used when applying the NW algorithm. Costs matrices were: (a) both indel and 

substitions costs equal 1; (b) indel costs equal 1, substitution costs equal 2; and (c) indel 

costs equal 2, substitution costs equal 1; code substitutions are possible in the three cases. 

Priority orders were those described above; as the priority order affects the trace back but 

not the total number of agreements between the sequences, tallies in the off-diagonal cells 

of the agreement matrix may vary when the priority order is varied, and thus different 

kappas can be obtained. 

In sum, the following parameters were varied systematically in the simulations 

according to a 5 × 3 × 4 × 3 × 2 × 2 × 3 × 4 factorial design: 
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1. Observer accuracy:  ρ  = .60, .70, .80, .90, 1.00. 

2. Latent sequence length:  µ = 25, 50, 100. 

3. Number of codes: K = 3, 5, 10, 20. 

4. Code variability: F = 1 (equiprobable), 2 (moderate), 4 (high). 

5. False alarm probability: α  = 0, .20. 

6. Parameter for missing event probability: ω  = 0, .20. Actual missing event 

probabilities were thus ε  = 0 (for any value of ρ , when ω  = 0) and ε  = .08, .06, .04, .02, 

and 0, (for ρ  = .60, .70, .80, .90, 1.00, when ω  = .20, respectively). 

7. Cost matrices: (a) indels = substitutions = 1; (b) indels = 1, substitutions = 2; 

(c) indels = 2, substitutions = 1. 

8. Priority orders: (a) substitutions, deletions, insertions; (b) substitutions,  

insertions, deletions; (c) deletions, substitutions, insertions ; (d) insertions, substitutions, 

deletions; that is, Orders 1–4, respectively. 

For each combination of  these parameters, 2,000 latent sequences were simulated, 

their corresponding manifest sequences were generated and aligned, and kappas were 

computed for the agreement tables obtained from the alignments. In total, 8,640 (design 

cells) × 2,000 (pairs of manifest sequences) = 17,280,000 alignment kappas were calculated. 

Results were summarized by averaging the kappas within each design cell. Only the most 

relevant results will be detailed here; the complete table of mean kappas is available from 

the authors upon request. 

Simulation Results 

Figures 6 through 9 show mean values of kappa as a function of observer accuracy 

for selected combinations of parameters. Each point in the figures represents the mean value 
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of kappa for 2,000 cases. Observer accuracies of .70, .80, .90, and 1 are displayed; for 

accuracies less than .70, essentially all mean values of kappa were below .50, values that are 

rarely regarded as acceptable.   

Figures 6 and 7 portray three sets of lines.  The topmost set we regard as a best case 

scenario: a longer sequence of many, equiprobable codes with no false alarms or missed 

events (µ = 100, K = 20, F = 1, α = ω = 0); the middle set as a worse case scenario: a 

shorter sequence of few codes varying in probability but with no false alarms or missed 

events (µ = 25, K = 3, F = 4, α = ω = 0); and the bottommost set as a worst case scenario:  

like the worse case but with false alarms and missed events (µ = 25, K = 3, F = 4, α = ω = 

.20).  We also considered a fourth case (µ = 100, K = 20, F = 1, α = ω = .20); results were 

slightly better than the worst case, but sufficiently similar to it that we decided for 

simplicity not to consider these results further.   

The values graphed in Figure 6 indicate the effect of varying priority order (for these 

results, indel and substitution costs were identical, i.e., indel = substitution = 1). The lower 

line in each set represents Order 1 whereas the upper represents Order 3; Orders 2 and 4 

gave essentially the same results as Orders 1 and 3, respectively, so are not shown. The 

difference between Orders 1 and 3 increased somewhat as accuracy declined, but was never 

great.  Consequently we recommend using Order 1 when aligning sequences because it is 

slightly more conservative (i.e., gives slightly lower values of alignment kappa). Moreover, 

Order 1, which specifies that substitutions are given priority over deletions and insertions, 

strikes us as more realistic than Order 3. Consequently, subsequent simulation results are 

given for Order 1 only. Otherwise, we conclude from Figure 6 that, except for the most 
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extreme worst case scenarios, investigators can reasonably conclude that alignment kappas 

of .60 or better indicate observers who are at least 90% accurate. 

The values graphed in Figure 7 indicate the effect of varying cost matrices. The 

lower line in each set favors substitutions (indel = 2 and substitutions = 1), the middle line 

favors neither (indel = substitution = 1, as for the results shown in Figure 6), and the upper 

line favors insertions and deletions (indel =1 and substitutions = 2). Costs have little effect 

for the best case scenario, but more of an effect for less than ideal scenarios, especially as 

observer accuracy declines.  Lowest values of alignment kappa are obtained when 

substitutions are favored.  Consequently we recommend specifying indel = 2 and 

substitutions = 1 when aligning sequences because it is slightly more conservative. 

Moreover, this specification, like Order 1, strikes us as more realistic than favoring 

insertions and deletions (disagreements are more likely than missed events and false 

alarms). Consequently, subsequent simulation results are given for indel = 2 and 

substitutions = 1 only. Otherwise, as with Figure 6, we conclude from Figure 7 that, except 

for the most extreme worst case scenarios, investigators can reasonably conclude that 

alignment kappas of .60 or better indicate observers who are at least 90% accurate. 

The values graphed in Figure 8 compare the effect of varying number of codes and 

sequence length for equiprobable codes, keeping other factors constant (i.e., F = 1, α = ω = 

0, substitutions favored over indels, and priority Order 1). The topmost set of lines 

represents K = 20 and the bottommost K = 3.  The lower, middle, and upper lines in each set 

(separate lines are not always visible) represent µ = 25, 50, and 100, respectively. 

Alignment kappas were higher when more codes were defined (i.e., K = 20), as expected, 

but sequence length had only a slight effect (when codes were few, alignment kappa 
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became somewhat higher for longer sequences as observer accuracy declined). Under ideal 

circumstances (K ≥ 20), the relationship between observer accuracy and mean kappa is 

almost linear, and accuracy can be estimated approximately as ( )ˆ 3 2 / 5ρ κ≅ +  (for κ ≥ .40, 

Order 1, and substitutions favored over indels). We conclude that, other things being equal, 

alignment kappa is not much affected by sequence length but that higher values can be 

expected when more versus fewer codes are defined.  

The values graphed in Figure 9 compare the effect of varying code variability and 

sequence length when few codes are defined, keeping other factors constant (i.e., K = 3, α = 

ω = 0, substitutions favored over indels, and priority Order 1). The topmost set of lines 

represents µ = 100 and the bottommost µ = 25 (although the sets overlap).  The lower, 

middle, and upper lines in each set represent F = 4, 2, and 1, respectively. Alignment 

kappas were a bit higher for longer sequences (i.e., µ = 100), as expected; likewise as 

expected, values of alignment kappa became somewhat higher as code variability 

decreased. We conclude that code variability has only a small effect on alignment kappa, 

other parameters being constant. As shown in Figure 9, when codes are highly variable, 

mean kappa is smaller than when they are equiprobable, but the effect diminishes as 

sequence length increases; for long sequences, code variability has little effect on kappa, 

especially for high levels of observer accuracy, and presumably would be even less for 

values of K higher than the 3 assumed by Figure 9.  

Summary and Recommendations 

Sequences of discrete events, utterances, or some other unit that have been 

independently coded by two coders using a set of mutually exclusive and exhaustive codes 

can be aligned using a straightforward adaptation of Needleman and Wunsch’s (1970) 
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algorithm, an algorithm initially devised for aligning nucleotide sequences.  Once aligned, 

an agreement kappa can be computed, which provides an estimate of observer agreement.  

We have termed this alignment kappa; it differs from the usual Cohen’s kappa (1960) only 

in that the upper-leftmost cell of the agreement matrix is a structural zero, which means that 

expected frequencies cannot be computed with the usual formula but require an iterative 

proportional fitting algorithm as is commonly used in log-linear analyses (Bakeman & 

Robinson, 1994).   

Using a computer program we devised for the purpose (program GSA, for Global 

Sequence Alignment), we generated thousands of pairs of sequences, which were then 

aligned and an alignment kappa computed.  A number of parameters were varied, including 

observer accuracy, latent sequence length, the number of codes defined, the variability of 

the probabilities with which those codes were used, and the probabilities of false alarms and 

missed events (which when not zero result in pairs of sequences whose lengths differ).  

Other parameters varied were specific to the NW algorithm and included different cost 

matrices and various priority orders.   

From the simulations we concluded that under most reasonable circumstances, 

observer accuracies of 90% or better result in alignment kappas of .60 or better.  Other 

things being equal, value of kappas were not strongly affected by sequence length, the 

number of codes, or the variability in their probability, but were adversely affected, as 

expected, as missed event and false alarm probabilities increased.  We also concluded that, 

in part to be conservative and in part to be realistic, that absent a strong rationale, cost 

matrices and priority orders should favor substitutions (i.e., disagreements) over insertions 

and deletions (i.e., missed events and false alarms).   
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We also developed a second user-oriented computer program (which we call ELign 

for Event Alignment) that aligns event sequences and computes alignment kappa.  The user 

provides two files in Sequential Data Interchange Standard format (SDIS, Bakeman & 

Quera, 1995); the first file contains one or more event sequences as coded by one observer 

and the second file contains the corresponding sequence or sequences as coded by a second 

observer.  ELign lets the user specify the cost matrices.  Possibilities are:  (a) indel costs = 

2, substitution costs = 1, (b) indel costs = substitution costs = 1, (c) indel costs = 1, 

substitution costs = 2, (d) indel costs = 1, substitution costs = 3 (meaning no substitutions 

are permitted); and any of these default weights can be edited if the user has a reason for 

preferring other weights.  As noted earlier, we recommend (a), which is the program 

default.  ELign also lets specify priority orders (1–4), although again as noted earlier, we 

recommend the program default Order 1, which favors substitutions. 

ELign always displays the value of alignment kappa.  Optionally, the user can also 

request that all alignments, agreement matrices, and other matrices produced by the 

alignment algorithm be displayed.  ELign is written in Pascal (Borland’s Delphi); an 

executable version of the program can be downloaded at no cost from the authors’ web sites 

(www.gsu.edu/~psyrab/BakemanPrograms.htm and 

www.ub.es/comporta/vquera/vquera.html). 
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Figure captions 

 

Figure 1. 

A weight or cost matrix that weights all insertions, deletions, and substitutions equally. 

 

Figure 2. 

The three possible values for distance Drc  between two subsequences. Cell(r–1,c–1) 

indicates substitution of code s2c for s1r, (r–1,c) indicates deletion of code s1r, and (r,c–1) 

indicates insertion of code s2c; the transformation which results in the lowest value for Drc is 

selected. 

 

Figure 3. 

Dynamic programming table containing values of the distance, length, and pointer matrices 

after applying the NW algorithm to  sequences BBACDACDAB and BACAACABABD. 

Rows and columns correspond to positions in sequence 1 and sequence 2, respectively; all 

costs were set to 1. Each cell contains three entries:  The first value is the generalized 

Levenshtein distance between the subsequences up to positions r and c in the initial 

sequences; the second value is the length of the subsequence that is common to both 

subsequences, and the third is a pointer.  Pointers indicate which neighbor cell contributed 

to the computation of distance and length for the current cell.  Gray cells with values in bold 

show the cells in the trace back from the bottom right cell to the top left one. 
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Figure 4. 

Trace back for obtaining the alignment between sequences BBACDACDAB and 

BACAACABABD. 

 

Figure 5. 

Agreement matrix when substitutions are allowed (all indel and substitution costs equal 1), 

obtained from the alignment beween sequences BBACDACDAB and BACAACABABD. 

 

Figure 6.  

Mean values for kappa for varying observer accuracies, for identical indel and substitution 

costs (= 1), and varying alignment priority orders. The topmost set of lines correspond to a 

best case scenario (µ = 100, K = 20, F = 1, α = ω = 0); the middle set, to a worse case 

scenario (µ = 25, K = 3, F = 4, α = ω = 0); and the bottommost set, to a worst case scenario 

(µ = 25, K = 3, F = 4, α = ω = .20). Within each set, lines for priority orders 1 (lower line) 

and 3 (upper line) are shown.  

 

Figure 7. 

Mean values for kappa for varying observer accuracies, for alignment priority order 1, and 

varying sets of costs. The topmost set of (overlapping) lines correspond to a best case 

scenario (µ = 100, K = 20, F = 1, α = ω = 0); the middle set, to a worse case scenario (µ = 

25, K = 3, F = 4, α = ω = 0); and the bottommost set, to a worst case scenario (µ = 25, K = 

3, F = 4, α = ω = .20). Within each set, lines for different costs are shown: indel = 2 and 
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substitutions = 1 (lower line); indel = substitution = 1 (middle line); and indel =1 and 

substitutions = 2 (upper line). 

 

Figure 8. 

Mean values for kappa for varying observer accuracies and sequence lengths, for alignment 

priority Order 1, indel costs = 2 and substitution costs = 1, and equiprobable codes (F = 1); 

false alarms and missing events are not possible (α = ω = 0).  The topmost set of lines 

correspond to K = 20, and the bottommost to K = 3. Within each set, lines represent 

different latent sequence lengths, µ = 25, 50, and 100 (lower, middle, and upper lines, 

respectively; separate lines are not always visible). 

 

Figure 9. 

Mean values for kappa for varying observer accuracies and degrees of code variability, for 

K = 3 codes, priority Order 1, and indel costs = 2 and substitution costs = 1; false alarms 

and missing events are not possible (α = ω = 0).  Continuous lines represent µ = 100, and 

dashed lines µ = 25. Lower, middle, and upper lines in each set represent F = 4, 2, and 1, 

respectively. 
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Figure 1 

 

 

 delete c1 = A c2 = B c3 = C c4 = D 

insert — 1 1 1 1 

c1 = A 1 — 1 1 1 

c2 = B 1 1 — 1 1 

c3 = C 1 1 1 — 1 

c4 = D 1 1 1 1 — 
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Figure 2 

 

 

 c – 1 s2c = c  

r – 1 Dr–1,c–1 + w(s1r,s2c) 
                          

Dr–1,c + w(s1r,0) 
  

s1r = r Dr,c–1 + w(0,s2c) 
                          Drc  
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Figure 3 
 

          S2 

     S1 
delete s21=B s22=A s23=C s24=A s25=A s26=C s27=A s28=B s29=A s2,10=B s2,11=D 

insert 0 0  1 0  2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 

s11= B 1 0  0 1  1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 

s12= B 2 0  1 1  1 2 2 2 3 2 4 2 5 2 6 2 6 2 7 2 8 2 9 2 

s13= A 3 0  2 1  1 2 2 3 2 3 3 3 4 3 5 3 6 3 6 3 7 3 8 3 

s14= C 4 0  3 1  2 2 1 3 2 3 3 4 3 4 4 4 5 4 6 4 7 4 8 4 

s15= D 5 0  4 1  3 2 2 3 2 4 3 4 4 5 4 5 5 5 6 5 7 5 7 5 

s16= A 6 0  5 1  4 2 3 3 2 4 2 5 3 5  4 6 5 6 5 6 6 6 7 6 

s17= C 7 0  6 1  5 2 4 3 3 4 3 5 2 6 3 6 4 6 5 6 6 7 7 7 

s18= D 8 0  7 1  6 2  6 3 4 4 4 5 3 6 3 7 4 7 5 7 6 7 6 8 

s19= A 9 0  8 1  7 2 6 3 5 4 4 5 4 6 3 7 4 8 4 8 5 8 6 8 

s1,10= B 10 0  9 1  8 2 7 3 6 4 5 5 5 6 4 7 3 8 4 8 4 9 5 9 
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Figure 4   

 

 
Cell Pointer S1 S2 Transformation

(10,11)  - D insertion 

(10,10)  B B - 

(9,9)  A A - 

(8,8)  D B substitution 

(7,7)  - A insertion 

(7,6)  C C - 

(6,5)  A A - 

(5,4)  D A substitution 

(4,3)  C C - 

(3,2)  A A - 

(2,1)  B B - 

(1,0)  B - deletion 

(0,0)  - - - 
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Figure 5 

 

 

Observer 2 
Observer 1 – A B C D Sum 

– 0 1 0 0 1 2 

A 0 3 0 0 0 3 

B 1 0 2 0 0 3 

C 0 0 0 2 0 2 

D 0 1 1 0 0 2 

Sum 1 5 3 2 1 12 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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