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Abstract

Log-linear analysis is a useful but under-used technique for investigators who categorize
some entity (persons, dyads, various kinds of events such as bids for attention or turns
of talk in conversations, etc.) on several dimensions using nominal scales and then tally
the results in a multi-dimensional contingency table. In searching for the most
parsimonious yet tolerably fitting model for such data, log-linear analysis can provide
straightforward answers to a wide array of research questions. Log-linear analysis
specifically and contingency table analysis generally can be facilitated by an interactive
computer program such as the ILOG program described here. ILOG allows the user to
re-order searches for a fitting model interactively and collapse, expand, and otherwise
manipulate multi-way contingency tables in ways that most standard statistical
programs do not. It is available for free download at www.gsu.edu/~psyrab/ilog/.
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Interactive Log-Linear and Contingency Table Analysis

In a line that has been quoted by many writers since, the ancient Greek poet
Archilochus wrote that the fox knows many things, but the hedgehog knows one big
thing. Log-linear analysis is a hedgehog among statistical techniques: It does one thing
very well, which is analyze the counts of multi-dimensional contingency tables.

Investigators with ordinal and interval-scale data will need to look elsewhere for more
generalized analytic methods, but investigators who categorize some entity (persons,
dyads, various kinds of events such as bids for attention or turns of talk in conversations,
etc.) on several dimensions using nominal scales and then tally the results in a multi-
dimensional contingency table can find log-linear analysis a straightforward way to
address their research questions (e.g., see Bakeman & Robinson, 1994; Wickens, 1989).

There are at least three reasons why log-linear analysis is seldom used. First, as just
noted, is its specialization; its use is limited to contingency table analysis. Second,
although most statistical packages include one or two log-linear analysis programs, they
are not inherently interactive and, as we argue here, log-linear analysis is facilitated with
an interactive computer program. Third, the applied statistics taught to behavioral
scientists generally tend to de-emphasize analysis of nominal data; for example, most
introductory statistic tests in the behavioral and social sciences relegate chi-square
analysis—which, as we will show, is log-linear analysis for two-dimensional tables—to a
final chapter, one that, in the press of time, is often ignored by instructors.

Our primary point is that log-linear analysis is a potentially useful but often-overlooked
technique in behavioral research (education, psychology, sociology, etc.). Here we
provide an introductory tutorial for log-linear analysis and demonstrate how easily it can
be effected with ILOG, the interactive computer program described here. In particular,
ILOG allows you to define a series of hierarchic log-linear models and re-order searches
for a fitting model interactively—and also collapse, expand, and otherwise manipulate
multi-way contingency tables—in ways that most standard statistical programs do not.
This interactive capability facilitates both analysis and interpretation.

Structuring Contingency Table Data

Before any computer analysis can begin, files containing the relevant and appropriately
structured data need to be prepared, a point so obvious it probably goes without saying.
The most common format is a simple grid, a two-dimensional table with rows indicating
cases (persons, etc.; subjects in older literature) and columns indicating variables.
Examples of this format include the data sheets of most statistical programs and the
individual sheets of most spread sheet programs—although proprietary programs
typically obfuscate this simple format with binary files, files that require specialized
software to decipher. For text files—files that consist of lines of easily-readable text—
one common convention is to separate columns with tab characters (another common
convention uses a comma to separate values) and most proprietary programs allow for
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the import and export of such tab-delimited files. This makes tab-delimited files a useful
format for the exchange of grid-organized data.

Entering data into ILOG: Direct entry.

There are two ways to enter data into ILOG. The first is by direct entry. When ILOG first
opens, the default data display is a 2x2x2 contingency table whose cells all contain zero
(see Figure 1). Its three factors (dimensions) are named A, B, and C and their levels are
named Al and A2, B1 and B2, and C1 and C2.

File Edit Run ‘Window Help

fHE BlEE N Y

A 7 B | C Grand total =0

T
B2 0 1] 0
[

Totals

| «ﬁrat || (priur || next) || last » |

Figure 1. Main window for ILOG4, when first opened, showing tool bar icons and the default
data display for a 2x2x2, A by B by C table. The display shows the B by C table for level A1l. To
display the B by C table for level A2, either select next or select level A2 for factor A from the
drop down list box to the left.

If you intend to analyze a 2x2x2 table, you could proceed directly to enter counts in the
appropriate cells. Usually, however, you would begin by selecting Run > Define a New
Table, which lets you define the number of factors, the number of levels for each, and
factor and level names that reflect your data. You can then enter counts directly into
the cells of the contingency table displayed on your computer screen.

The order of the factors matters. An order may seem arbitrary, but necessarily factors
must be listed in some order and that order affects how tables are displayed. It should
also reflect how you think about your factors. The factor you think of as prior to the
others should be listed first, followed by the other factors in order, with the factor you
think of as the outcome—the factor you want to explain—coming last. This assures that
tables are displayed in a way that makes sense.
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For a two-dimensional table, it is conventional to think of rows as representing the
antecedent (or given) factor and columns as representing the outcome (or target)
factor. With more than two dimensions, a contingency table is made up of several
separate two-dimensional tables. Let g, b, ¢, etc. represent the number of levels for
factors A, B, C, etc. Then a three-dimensional table can be represented with a separate
bxc tables, a four-dimensional table with a times b separate cxd tables, and so forth.
The rows of the two-dimensional tables ILOG displays represent the next to last factor
and the columns represent the last factor. Making the last factor listed represent the
outcome of interest ensures that the columns of the two-dimensional tables displayed
on the computer screen will represent outcome.

Entering data into ILOG: File entry.

Instead of entering data directly, data can be read from a tab-delimited text file; thus
selecting File > Open an Existing Data File is the second way to enter data into ILOG.

The first line of this file consists of column headings: the first is ID, the next are the
names of your factors, and the final is COUNT, all separated with tabs (you can use
words other than ID and COUNT if you wish). For the remaining lines, the first column
contains an identifier for each line; it can be anything you want. Let N represent the
number of factors; then the next N columns contain names for a particular factor level.
The final column contains the count for that particular combination of level names (thus
each line contains N + 1 tabs).

Several lines could contain the same level names, in which case the counts would
accumulate in the designated cell (i.e., the cell indicated by that combination of level
names). Thus, if your data are already entered in another program’s datasheet or a
spread sheet, a tab-delimited file exported from these programs can be imported
directly into ILOG (File > Open an Existing Data File). Moreover, if you entered data
directly into ILOG, it can be saved to a file (File > Save the Current Table) and that file
imported into a statistical or spread sheet program.

As an example, consider Bakeman and Brownlee’s (1982) study of object struggles in
toddlers and preschool children during free play. They asked observers (working from
video records) to detect possession struggles—i.e., times when one child (the holder)
possessed an object and another (the taker) attempted to take it away—and to code
each possession struggle on four dimensions:

1. Age—whether the children were observed in the toddler or the preschool
classroom,

2. Dominance—whether the taker had been judged dominant to the holder,

3. Prior Possession—whether the taker had had prior possession of the contested
object within the previous minute, and

4. Resistance—whether the holder resisted the taker’s attempt (the last three were
coded yes or no).
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Bakeman and Brownlee regarded Resistance as the outcome of interest, reasoning that
holders would be less likely to resist if they believed the taker had a claim on the object,
presumably through prior possession, or if the taker were dominant. Thus the factors
are ordered Age of children, Dominance of taker, Prior Possession of taker, and
Resistance of holder. The data for their study were organized as a 2x2x2x2 table, the
tab-delimited version of which is shown in Figure 2. We use these data subsequently to
illustrate various ILOG procedures.

o
!

Age — DomiT — PriorT — ResistH — COUNT
— todler - vyes - yes - yes — 19
— presch - vyes —- yes — yes — 6

— todler - no - yes - yes — 16
— presch — no - yes - yes - 9

todler - yes - no - yes - 42
— presch - yes — no - yes - 18
- todler - no - no - yes - 61
- presch — no - no - yes - 27

VW W ~NOUTAWNR
!

— todler - vyes - yes - no - 7
10 — presch - vyes - yes — no - 5
11 - todler - no - yes - no - 4
12 - presch - no - yes - no - 6
13 - todler - vyes — no - no - 30
14 - presch - vyes — no - no - 5
15 - todler - no - no - no - 13

16 — presch - no - no - no - 4

Figure 2. The first line contains names for the four factors of this 2x2x2x2, Age by Dominance
by Prior Possession by Resistance contingency table. The remaining 16 data lines contain level
names for each factor—these uniquely identify a cell in the table—along with a count for that
particular cell. Items on each line are separated with tabs, shown here as an arrow. The file
could have more than 16 data lines, in which case counts for additional lines that contained the
same level names would accumulate in the designated cell. In the extreme, for each cell there
could be as many lines as there are counts in that cell, with each line having the same level
names but a count of 1; such a file might result when exporting from a statistical program like
SPSS.

When these data are opened in ILOG (and we urge you to try it), they would be
displayed on the screen as shown in Figure 3.
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Figure 3. Main window for ILOG4, after importing the 2x2x2x2, Age by Dominance by Prior
Possession by Resistance contingency table from the Bakeman & Brownlee study.

Modifying an Existing Contingency Table

It is often useful to modify an existing contingency table before further analysis.
Contingency table data may be available to you in spread sheet or datasheet form, but
not structured exactly as you wish, or with names for factors and levels other than those
you prefer. To modify an existing table in ILOG, select Run > Modify This Table.

This procedure lets you edit factor and level names, thus changing existing names to the
ones you want. It also lets you reorder factors so that your presumed output factor
comes last; and also delete factors, thereby reducing the number of dimensions of the
contingency table. Additionally, you can reorder levels, lump levels together (useful if
some levels have few counts), insert new levels (useful if additional data become
available), or delete existing ones (useful if you want to discard cases assigned to a
particular level).

These functions give you considerable freedom in setting up particular analyses or
overcoming technical problems (e.g., eliminating an entire level of a variable in case of
few counts). In sum, ILOG provides a number of ways to manipulate and modify an
existing contingency table. Exploring these functions with actual data should give you a
sense of ILOG's flexibility and power in this regard.
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[ 1LoG4: Modify AgeDomPPResis. fxt

[« |

Factar nam Level names...

Factor 1 |Age Presch

Factor 2 | slelgllal=lalst;

Factor 3 |PriorPoss Maove FactDE..
Factor 4 |Resistance | | |

‘ @OK ‘ ‘@ﬁ\bnrt

Figure 4. Modifying a table to delete the Dominance factor. Select Dominance factor, right click
for context menu, then select Delete Factor.

Factor and level names: To change, select {i.e., left click) and edit.
Factor names: To delete or change arder, select and right click for menu.
Level names: To lump, inger, or delete, select (name ar range) and right click for menu.

For example, if we had imported the data file described earlier, but decided we did not
want to consider Dominance further, we could delete the Dominance factor as

follows: select Dominance, right click for context menu, then select Delete Factor (see
Figure 4). The resulting 2x2x2 table would be displayed by ILOG as shown in Figure 5.
Note that the count for toddlers with prior possession showing resistance is 35, the sum
of the two cells with (19) and without dominance (16) from the data file.

[ 1L0G4 - AgePPosResis. txt
File Edit Run Window Help

™ ) ey -
CEHE HiEE N b
R o i e 57,

e | v| PriortPoss | Resistance Grand total = 272
yes no Totals
yes Gl i
na 103 43 146

Totals  KECHN 5 192
| «ﬁrst || <pri|:|r || next) || last » |

Figure 5. Main window for ILOG4, after deleting the dominance factor, which results in a 2x2x2,
Age by Prior Possession by Resistance contingency table.
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Analyzing Two-Dimensional Tables

The data for any N-dimensional table could be analyzed using nothing more than the
two-dimensional chi-square analyses of introductory statistics courses. Examining the
constituent two-dimensional tables derived from a larger N-dimensional table would
usually be characterized as piece-meal analysis, but could be justified as follow-up
analyses, guided by log-linear results (as we show later)—much in the same way as, with
continuous data, follow-up analyses are used to explicate significant analysis of variance
interactions. Examining separate two-way tables can be useful in itself, but because
ILOG users will most likely pursue such an examination as follow-up to log-linear
analyses, it makes some sense to defer discussion of this topic until after log-linear
analysis has been introduced.

Nonetheless, we discuss examining two-way tables first because of the way it introduces
concepts essential to log-linear analysis, but in the more familiar context of two-
dimensional chi-square. To invoke the ILOG procedure that gives counts and other
statistics for two-dimensional tables, select Run > Examine as Two-Way Tables.

You then name the factors for the rows and columns of the two-dimensional table you
wish to examine and indicate whether other factors should be pooled (tables are
collapsed over such factors) or listed (separate two-dimensional tables for each level of
such factors are displayed, or combinations of levels if more than one factor is listed).
Appropriate statistics for each two-dimensional table are then displayed: observed and
expected frequencies and adjusted residuals for each cell, chi-square for each table, and
the odds ratio and Yule’s Q for 2x2 tables (for detailed definitions of these and other cell
and table statistics see Bakeman & Gottman, 1997; Bakeman & Quera, 2011).

For example, for the object struggle data, we might request that rows represent Prior
Possession and columns Resistance, listed separately by Age, but pooled over
Dominance (see Figure 6). Analyzing the toddler and preschool tables separately shows
a significant chi-square for preschoolers but not toddlers (p = .013 vs. .47).

For preschoolers, the odds that the holder resisted when the taker had prior possession
were less than when the taker did not have prior possession: OR =0.27 [0.09, 0.78)—
95% confidence interval (Cl) in brackets. In contrast, for toddlers, the odds that the
holder resisted when the taker had prior possession were somewhat greater than when
the taker did not have prior possession, but not significantly so: OR =1.33[0.62, 2.86).

Because we checked odds ratio for Write checked stats, these statistics were displayed
in the ILOG results window (see Figure 7).

In sum, a piece-meal analysis would suggest that a taker’s prior possession decreased
the holder’s resistance for preschoolers, but had little effect on toddlers. This piece-
meal analysis, however, only tells us that the prior possession-resistance association
was statistically significantly just for preschoolers (the 95% Cl excluded 1) but not for
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toddlers. In particular, it does not tell us whether the difference between the toddler
and preschool effect was itself statistically significant. For that a log-linear analysis is
needed.

Nonetheless, the Examine as Two-Way Tables procedure provides a powerful way to
explore a multi-way contingency table.

() stats for pooled 2-way tables - ApeDomPPResis. txt |Z||E|r>__(|
Change row, col, pool, list PriorPoss | Resistance
O Yes. chanoe @ QK. continue
Age VLE: fo Totals
BEIIERED no 2.481 2,491 54
PriorPoss
Resistance
Display selected stats Write checked stats Totals m 20 &0
) jnint frequency Djuint frequency
O expected frequency [expected frequency [ «ﬁrst H ( prior H next) ” last » l

(O residual (obs - exp) [residual (obs - exp)
(® adjusted residual (z) [ adjusted residual (z) A1, M =80)=6.154, p=.013

Xz dds rati GA(1, N =80) = 5887, p=.015
ng Esf |S rgm odds ratio = 0.27 [0.09, 0.73] Yule's O =-571
Hies Right click on table for options to make or delete structural-zeros.

Figure 6. Window for Examine as Two-Way Tables with object struggle data. Age selected as
list, dominance as pool, PriorPoss as row, and Resistance as column.

M ILOG Results =03
File Edit ‘Window

fHE

ILD34, Interactive log-linear analysis, 1/10/2015 11:33:30 AM

File: LgeDomPPResis.txt

Age=FPresch Dominance=pooled

odds ratic = 0.27 [0.09, 0.78]

Age=Todler Dominance=pooled

odds ratioc = 1.33 [0.62, 2.86]

Figure 7. Results window when odds ratio was checked for Write checked stats.
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Log-Linear Analysis of N-Dimensional Tables

Log-linear analysis is used to analyze, not just two-dimensional tables, but contingency
tables of more than two dimensions. As such, it can be regarded as an N-dimensional
extension of the chi-square analyses of introductory statistics courses. Among the
standard references are Bishop, Fienberg, and Holland (1975) and Fienberg (1980),
although more accessible alternatives are Bakeman and Robinson (1994), Kennedy
(1992), and Wickens (1989), with Wickens being especially thorough and clear.

A typical log-linear analysis begins by defining a series of hierarchical models. A series of
models is hierarchic when higher level models include all terms present in lower order
models, and lower level models omit one or more terms from the model immediately
preceding it. As terms are deleted—deleting higher-order terms before lower-order
ones—more parsimonious models result, that is, each model in the series is less
complex than the one before it.

The goal of log-linear analysis is to identify the simplest model that still provides an
acceptable fit to the data. Thus the best fitting model combines parsimony and
information. Models generate expected counts for the cells of the contingency table.
Less complex models, having fewer terms, are less constrained and so have more
degrees freedom—and consequently the counts they generate fit the observed data less
well. The question is, how much less? How bad is a less well-fitting model?

A model’s goodness-of-fit—more accurately, badness-of-fit—is assessed with the
likelihood ratio chi-square (symbolized G%), an alternative computation for the more
familiar Pearson chi-square (y2) that, for technical reasons associated with its
decomposition, is preferred in log-linear analysis. Both G*and xz express the
discrepancy between the data collected and a hypothesized model that indicates how
variables are related; in other words, they reflect the difference between the observed
counts and the expected counts generated by a particular model. The greater the
difference between the observed and expected counts, the larger G* and xz become.

The bigger G* is, the worse the model fits. The first model in the hierarchic series—the
saturated model—generates expected frequencies that match the observed ones
exactly and, for that reason, fits the data perfectly: Its G* = 0 with O degrees of freedom.
The question then becomes whether a more parsimonious model, one with a larger G2,
will still fit acceptably.

A common criterion for a tolerably fitting model is the significance of its G*: If G is small
and not significant, p > .05, the discrepancies between the observed cell counts and
those generated by the model must be relatively small, and so we conclude that the
model fits acceptably. However, given large counts, this criterion may be too strict
because even relatively small deviations from expected will result in a G’ significantly
different from zero.
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A second criterion, useful when counts are especially large, is the magnitude of Q%
which is a comparative fit or reduction in error index analogous to the R? of multiple
regression. Knoke and Burke (1980) suggested that any model whose Q is greater than
.90 provides satisfactory fit, even if its G* differs significantly from zero. Q’is the
proportion of a specified base model’s G” that is accounted for by the model in
guestion, specifically:

QZ _ Ggase B Grznodel .
Gtz)ase
In other words, Q* indicates how much initial failure to fit is reduced by a particular
model. When the terms in this model account for over 90% of the baseline model’s
failure to fit we conclude that the model fit is acceptable and that the terms deleted to
form the model are not consequential. Selecting an appropriate baseline model can be
something of an art. Absent a rationale, a safe choice is the equiprobable or null model,
the model that predicts that all cells will have the same count. When one factor is
clearly regarded as the outcome, another choice is the outcome-and-design model, as
described shortly.

Bracket notation. An especially convenient way to specify log-linear models is with
bracket notation. As an example, consider the prior possession study whose four
dimensions are A, D, P, and R (for Age, Dominance, Prior Possession, and Resistance).
As previously noted, the most complete model is called the saturated model. Using
bracket notation, it can be represented with the single 4-way term [RPDA]—here we
have reversed the order of the factors so that, as in a multiple regression equation, the
presumed outcome variable is listed first (ILOG automatically reverses the order of
factors when making models). The saturated model is conventionally shown as a single
term—letters representing each of the factors enclosed in square brackets. In fact, it
also includes implicitly all possible lower-order terms, in this case the four 3-way
terms—[RPD][RPA][RDA][PDA]; the six 2-way terms—[RP][RD][RA][PD][PA][DA]; the
four 1-way terms—[R][P][D][A]; and a constant, indicated here as the null model—[0],
the model that predicts equal counts for each cell and so maximizes G’ (i.e., failure to
fit).

Specifying models. ILOG lets you specify models in three different ways. As an
example, imagine that we used the modify table procedure to delete the dominance
factor from Figure 2’s 2x2x2x2 table, resulting in a 2x2x2, Age by Prior Possession by
Resistance table for analysis. To begin analyzing log-linear models in ILOG, select Run >
Specify Log-Linear Models.

The Specify Models window that would open for the 3-dimensional table just described
is shown in Figure 8. Initially, the first line would indicate the saturated model (without
brackets), but all other lines would be blank. One way to specify a new model is to
select (i.e., left click) the first blank cell in the model column; a list of terms will be
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displayed and a new model will be built from the terms selected. A second way is to
select a cell in the delete column; a list of terms will be displayed and a new model will
be built, but with the selected terms deleted. A third way is more automatic. Selecting
Run > Make All-Level Models generates a list of all possible models, from the saturated
to the null, as shown in Figure 3, whereas selecting Run > Make Next-Level Models
generates just models for the next level. For example, if only the 3-way saturated
model is listed (and selected), Make Next-Level Models generates all models involving
2-way terms up to and including the model that consists of all 1-way terms (lines 2-5 in

Figure 3).
m5pecify models - ApePPosResis. txt Q@@
Fun
A JEIES
# Maodel e df ~p Delete  AG2 rf o ~p Q= AGF
Baze n
Mol 1. oo 0 1000 - 1.00
Compute GF 2, RP RA PA 581 1 015 RPA, 5.81 1 s a7 03
R = Resistance 3. RA PA, 6.43 2 038 RF 062 1 435 95 oo
P = PriorPoss 4, PAR B.71 3 .080 R, 0.28 1 02 96 .o
A= Age 5. RPA 878 4 OEE  PA 200 1 46 55 01
B. A 67 .45 ] <.0M R 5567 1 =.001 B2 33
7. A, 13013 6 «.0M P 6268 1 =.001 ey 35
g. 1] 17rgs 7 =.0M A, 47 52 1 =.001 o 27
# =% expected < 1 if »6% # 5=df adjusted for structural To specify new Model: Left click on first blank cell in Madel {or Delete) colurmn.
zeros #M=df adjusted for zeras in marginal cells. Ta change Model's deleted terms: Left click on cell in Delete column.

Figure 8. Specify Models window for ILOG4, shown after opening a 2x2x2, Age by Prior
Possession by Resistance contingency table (based on data in Figure 2), after checking Compute
@, and selecting Run > Make all level models and Run > Compute model stats. The figure
shows the G°, degrees of freedom, and approximate probability for each model and, for models
after the saturated model, the term deleted from the previous model to create it and the AG?
and its degrees of freedom and approximate p-value for the chi-square difference test.

You probably see a pattern here, especially if you recall permutation formulas or
Pascal’s triangle (Bakeman & Robinson, 2005). With two dimensions (factors) and
including the saturated and the null, 4 hierarchical models are possible—[YX], [Y][X], [X],
and [0]; with three dimensions (as here) there are 8, with four there would be 16, and
generally with N factors there are 2" possible hierarchical models. The number of n-way
terms follows the binomial expansion (Pascal’s triangle). For N = 2 coefficients are 1, 2,
1;for N=3theyarel, 3, 3,1; for N=4theyarel, 4,6, 4, 1; etc., where coefficients are
the number of n-way terms, from the saturated to the null model (e.g., for N =4, one 4-
way, four 3-way, six 2-way, four 1-way and one null term).

Two points should be emphasized. First, although you can generate 2" hierarchical
models, you are only interested in finding the most parsimonious—that is the last model
in the hierarchic series that still fits tolerably well. Second, the order in which terms are
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deleted from models that include all n-way terms (e.g., lines 2 and 5 in Figure 3) is
arbitrary. You can accept the default order or specify your own, based on whatever
order makes the most conceptual sense to you. By default, ILOG deletes terms in the
left-to-right order you might expect: for example, for [ABC], first [AB] then [AC] then
[BC]. But if you prefer a different order, you can simply select a delete term and change
the terms deleted as described earlier.

After specifying a series of hierarchic models, next you would select Run > Compute
Model Stats, which causes a variety of statistics to be displayed in the Specify Models
window. Of immediate interest is the G for each model, which is displayed along with
its degrees of freedom and approximate p-value. Typically, your interest is locating the
last model in the series with a non-significant p-value, that is, one for which p > .05.
Alternatively, especially if the number of tallies is large, you may prefer to locate the last
model in the series whose Q? is at least .90. Other entries indicate, for each model, the
terms deleted from the previous model and the degrees of freedom and approximate p-
value for the deleted term or terms. This constitutes a chi-square difference test
(partial G* or AG*—labelled ~G* in ILOG), appropriate when one model is nested in
another, and indicates whether removing the deleted terms caused the fit of the model
to deteriorate significantly.

Interpretation. Earlier we noted that the association between Prior Possession and
Resistance was significant for preschoolers (p = .015) but not toddlers (p = .47), but that
the piece-meal analyses could not tell us wjetjer the magnitude of the association
differed between them. The log-linear analysis shown in Figure 8—after checking the
Compute @Q° box (for illustration; the number of tallies here is not especially large) and
after selecting Run > Compute Model Statistics—provides an answer. We would
conclude that only the saturated [RPA] model fits because its p-value is > .05 and the p-
value for the next model in the series is less than .05 (assuming an alpha level of .05). In
other words, this 3-dimensional table cannot be simplified. The association between
Prior Possession and Resistance differed by Age.

Recasting these results in more familiar analysis of variance terms is helpful. If we
identify one factor as the outcome, an N-dimensional contingency table can be
described as an (N-1)-way analysis of variance. Imagine the factors are A, B, and Y, with
Y the outcome, so that the saturated model is [YBA]; B could be a predictor and A could
be a moderator variable (like Age or Gender). The [YB] term indicates a main effect for
factor B, the [YA] term a main effect for factor A, the [BA] term simply indicates the
design, and the [YBA] term indicates a BXA interaction. In particular, given three
factors—one an outcome, one a predictor, and one a moderator—log-linear analysis
provides an answer to a common question: Is the association between the outcome
and predictor different for different groups, that is, is it moderated by group
membership?
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Base model. Thinking in analysis of variance terms also helps us determine an
appropriate base model. When one variable is regarded as the outcome and others as
design variables, an appropriate base model, using the notation of the previous
paragraph, is [BA][Y]—this is the outcome-and-design model we mentioned earlier.
Including [BA] in the base model signals that we are interested in associations between
outcome and design variables, not in associations within the design variables; after all,
they are often determined by the investigator, as when gender is one factor and we
recruit equal numbers of males and females. For example, if we specified [PA][R] as the
base model for the Figure 3 analyses (and not the null model as in Figure 3), the Q* for
the [RP][RA][PA] model would be = (6.71 — 5.81)/6.71 = .13—which is further evidence
that this is an ill-fitting model.

If you checked Compute Q°, which requires that a base model be specified, ILOG
assumes the base model is the last model listed in the hierarchic series. ILOG lets you
state your base model (upper-left edit box in Figure 8). This is useful as a reminder if
your base model is something other than the null. If the number of factorsis 2 or 3,
automatic model generation will stop with the specified base model, but if the number
of factors is 4 or more, you will need to select terms to delete to insure that the last
model specified is, in fact, your desired base model.

Structural zeros, empirical zeros, and low counts. Cells may contain zero for different
reasons. For example, if one factor is gender (male or female) and the other pregnant
(yes or no), one of the cells will necessarily be zero—this is called a structural zero (any
other value is logically impossible) and is indicated in ILOG, not with a 0, but with an
asterisk. Structural zeros reduce degrees of freedom and ILOG makes the appropriate
adjustments; for any given model, the degrees of freedom adjustment is displayed after
the model number.

However, cells may also contain zeros simply because no cases were observed; usually
such empirical zeros are not problematic if they are few in number. However, if many
cells contain zeros or low counts, the expected frequencies computed may be low. If
expected frequencies are less than 1 for more than 5% of the cells for any given model,
ILOG displays the percentage after the model number. Guidelines vary, but Wickens
(1989) has suggested that, for large two-way tables, it may be acceptable, if not
desirable, for as many as 20% of the cells to contain expected frequencies less than
one—but if the guideline is violated, the test should be abandoned. For
multidimensional tables, you should remain wary if many cells are zero.

Empirical zeros can cause another problem. Depending on where they occur, they can
cause some cells of the marginal tables used to compute expected frequencies to be
zero and thereby reduce degrees of freedom (Wickens, 1989, pp. 120-124). As Wickens
writes, “A pre-packaged computer program may or may not make these corrections
automatically—one should check to be sure” (p. 120). ILOG does make these
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adjustments and notes the number by which degrees of freedom were reduced
(displayed after the model number of any affected models).

Deviant cells. A small G for a model indicates that most cells fit well, that is, the
expected frequencies generated by the model are fairly close to those observed,
whereas a large G’ indicates just the opposite. For the present example, the saturated
model [RPA] fit the observed exactly, but it could be useful to examine why the
[RP][RA][PA] model failed to fit. Selecting a particular model in the Specify Models
window and then selecting Run > Examine Selected Model, opens a window that lets
you examines the differences between observed and expected-by-the model
frequencies for each cell. For this example, the largest standardized residual (+1.36) is
for prior possession without resistance for preschoolers: 11 instances were observed
but only 7.31 were expected by the [RP][RA][PA] model. For toddlers, the opposite was
true; again 11 instances were observed but 14.7 were expected and, consequently, the
standardized residual was negative (—0.96). Thus it is not surprising that the log-linear
analysis suggested an interaction—a difference in the prior possession—resistance
association between toddlers and preschoolers.

Once you have settled on a tolerably fitting model to interpret, next steps include
explicating its terms. As with the significant main effects and interactions of analysis of
variance, the included terms indicate how you should explicate the data. For the
present example, because you decided that age moderates the prior possession—
resistance association—i.e., you accepted the [RPA] model—then you would report that
preschoolers were less likely to resist when the taker had prior possession than toddlers
(58% vs. 76%). However, if the data had been different and the [RP][RA][PA] model had
fit tolerably well, then you would report main effects for age and prior possession (no
interaction), along with resistance percentages for age and for prior possession.

One final comment: A strength of ILOG is its ability to re-order models in a hierarchic
series. In Figure 8, by default ILOG deleted the [RP] term before [RA], but if you wished
to delete the [RA] term first, for whatever reason, you would select the [RP] term in the
Delete column and select the [RA] term from the options presented. If the resulting
series is hierarchic, ILOG will then re-compute statistics, as appropriate. The advantage
of this ability to change the order in which terms are deleted in a hierarchic series
becomes more apparent with 4-dimensional tables, for which there are four 3-way
terms and six 2-way terms. As with any interactive computer program, exactly how this
all works is understood best as you explore the program with your own data.

Winnowing a Two-Dimensional Table

A particularly useful feature of ILOG’s Examine Two-Way Tables procedure is its
winnowing ability (see Bakeman & Gottman, 1997, pp. 119-120; Bakeman & Quera,
2011, pp. 129-130 and 143-144). When the % or G* associated with a two-way table
(either a simple two-way table or one created by pooling over levels of other factors) is
large and its p value small (e.g., < .05), we say the test of independence (of rows and
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column) has failed—only the saturated model fits. To interpret this result when there
are more than two levels for the row and column factors, we could examine adjusted
residuals (Bakeman & Quera, 2011); large ones indicate cells whose expected values
deviate significantly from expected. However, adjusted residuals in a two-dimensional
table form an interrelated web. If some are large, others necessarily must be small, and
so which do we interpret? All of those, for example, larger than 1.96 absolute?

Winnowing offers a more economical approach to interpretation. We identify those
cells that cause fit to fail; almost always this will be a smaller number than the number
initially identified as large, which offers a more parsimonious interpretation.
Winnowing consists of iteratively replacing selected cells (in an order you determine)
with structural zeros until we find a table that fits tolerably. We then assume that the
cells we replaced caused the bad fit of the table.

As an example, we consider unpublished data from a study of dinner conversation
provided by Clotilde Pontecorvo (University of Rome). Turns of talk were coded for
Speaker (Father, Mother, Target child, or Sibling) and Action (uses Knowledge, Relates,
Entertains, Controls, or Manages) for six families. Only the saturated model fit, thus we
concluded that no common pattern joined Speaker and Action—different Speakers were
associated with different functions in different families. We had thought that fathers
generally controlled and mothers managed, but these hypotheses were not supported.

In one family, G?(12, N = 330) = 78.3, p = <.001, indicating that different speakers
favored different actions: 7 of the 20 adjusted residuals exceeded 1.96 absolute (see
figure 9). Using the Examine Two-Way Tables procedure, and replacing just four cells
with structural zeros, produced a fitting model, G*(8, N = 212) = 14.716, p = .064 (see
Figure 10.

Change row, col, pool, list

(O joint frequency
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Crresidual (obs - exp)

& adjusted residual (z)

2 Yes. chanoe @ OK. continue

[ jaint frequency
[Jexpected frequency
[residual (obs - exp)

[adjusted residual (z)

D=
Oz

[ stats for pooled 2-way tables - FSA 6 families study. txt
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¥2(12, N = 330) = 7.5, p=<.001
GA(12, N = 330) = 78.3, p=<.001

Right click on table for options to make or delete structural-zeros.

Family KNOLEDGE RELATION ENTERT  CONTROL = MANAGE | Totals
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SIBLING | -1.83 344 243 127 201 B2
Display selected stats Write checked stats [ ils 7B 56 BG BT 330

Figure 9. The Speaker by Action table for one family, showing adjusted residuals and chi-squares
before winnowing.
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Right click on table for options to make or delete structural-zeros.

Figure 10. The Speaker by Action table for one family, showing adjusted residuals and chi-
squares after winnowing (replacing four cells with structural zeros).

Specifically, to replace cells with structural zeros, after selecting Examine as Two-Way
Tables in the main ILOG window, and after selecting the particular two-way table to
examine (here, Speaker as row, Action as column, Family as list and selecting the
particular family) in the Examine as Two-Ways window, position the mouse over the
table, right click, and select Let click make cell a structural zero from the context menu.
Then select (i.e., left click) each of the four cells: father uses relate and control, mother
uses relate, and target child uses knowledge. Their counts will be replaced with
asterisks (see Figure 10), indicating structural zeros, and the table chi-square will no
longer be statistically significant. We conclude that for this family these four
associations adequately captured their unique pattern.

More generally, winnowing is an economic way to identify those particular cells in any
two-dimensional table that cause fit to fail and is easily effected in ILOG (clicking on
particular cells replaces them with structural zeros and re-computes G?).

Conclusion

We have presented a relatively brief introduction to log-linear analysis. It is by no
means complete; several book-length treatments describe log-linear analysis with much
more breadth and depth (e.g., Wickens, 1989). Our intent is to provide readers with
enough of a sense of what log-linear analysis can do that they can then decide if it
would serve them and if they want to learn more. Throughout we have noted how log-
linear analysis and other analyses of contingency tables can be effected with an
interactive computer program, ILOG. We find that the analysis of hierarchical log-linear
models works best when approached interactively, which is what the ILOG program
does. We encourage interested readers to enter their own data into ILOG, or use the
data given in Figure 2, and then try running the various procedures. As is generally true,
exploring the various options that a computer program permits is often an excellent way
to learn more about both the analysis performed and the program’s capabilities.
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ILOG has several advantages. As noted earlier, standard statistical packages typically
have one or two log-linear analysis routines. Often they produce many pages of output.
As noted here, log-linear analysis typically proceeds by comparing models in a hierarchic
series, searching for a model to interpret. This is inherently an interactive process, a
process that an interactive program like ILOG greatly facilitates. The exploration
required for interpretation of log-linear results likewise is more efficient when
approached interactively, and again this is facilitated by the procedures ILOG provides
(Examine the Selected Model, Examine as Two-Way Tables). Finally, ILOG lets you
import tables that were exported by spread sheet or statistical package programs as
tab-delimited files, manipulate and modify contingency tables with considerable
flexibility (Modify This Table), export initial or modified tables as tab-delimited files that
can be imported into spread sheet and statistical analysis programs, and read or paste
its tab-delimited output into a standard spread sheet program for further manipulation
and analysis.

ILOG4 was written in Pascal using the Embarcadero® Delphi® XE2 compiler and uses an
Iterative Proportional fitting (IPF) algorithm to estimate expected frequencies. The
program is available for download at no cost from http://www?2.gsu.edu/~psyrab/ilog.
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